Compare commits

...

18 commits
v1.0 ... master

Author SHA1 Message Date
Jeroen Stroeve
67b5d14112 Start python in unbuffered mode to make log output work as expected 2024-09-22 21:45:05 +02:00
Jeroen Stroeve
7dcdca9a0c Add log 2024-09-22 21:44:20 +02:00
Jeroen Stroeve
f0b039558c Update buttons every hour 2024-09-22 20:47:45 +02:00
Jeroen Stroeve
43c0371177 Abort button updates if git pull fails 2024-09-18 20:40:24 +02:00
Jeroen Stroeve
16a44acc40 Update lock rotation to 900 2024-09-18 20:37:51 +02:00
Jeroen Stroeve
a0028efc8e Add doorduino service file 2024-08-24 16:09:39 +02:00
Jeroen Stroeve
882e4491be pi-config execute permissions 2024-08-24 15:40:49 +02:00
Jeroen Stroeve
c78649184e Add platformio workspace 2024-08-24 15:28:01 +02:00
Jeroen Stroeve
1ecb7a7c9a Add inner doors separately 2024-08-24 15:27:48 +02:00
Jeroen Stroeve
48caa6b8f0 Add lib deps doorduino_door 2024-08-24 15:25:14 +02:00
Jeroen Stroeve
02be0a1921 Add spacestate support 2024-08-24 15:23:55 +02:00
Jeroen Stroeve
fd0e6bfcc0 pi-config execute permissions 2024-08-21 14:20:12 +02:00
Jeroen Stroeve
5727a9aa71 Initial pi-configs from running system 2024-08-21 14:16:04 +02:00
Jeroen Stroeve
595dd8a30e Add verify/reset EEPROM code 2024-08-19 19:47:31 +02:00
Jeroen Stroeve
a1a1d7ae78 Move bitlair_doorduino_door to platformio structure 2024-08-19 19:45:17 +02:00
Jeroen Stroeve
217ab7f77a Upgrade to external EEPROM 2024-08-12 20:48:16 +02:00
Jeroen Stroeve
fbd800aae3 Change to PlatformIO structure 2024-08-12 20:46:31 +02:00
Jeroen Stroeve
909dd3b162 Update to new hardware with custom door lock hardware 2024-08-12 20:26:52 +02:00
54 changed files with 3912 additions and 32 deletions

View file

@ -0,0 +1,20 @@
{
"folders": [
{
"path": "."
},
{
"path": "bitlair_doorduino"
},
{
"path": "bitlair_doorduino_inner"
},
{
"path": "bitlair_doorduino_door"
},
{
"path": "reset_eeprom"
}
],
"settings": {}
}

5
bitlair_doorduino/.gitignore vendored Normal file
View file

@ -0,0 +1,5 @@
.pio
.vscode/.browse.c_cpp.db*
.vscode/c_cpp_properties.json
.vscode/launch.json
.vscode/ipch

View file

@ -0,0 +1,10 @@
{
// See http://go.microsoft.com/fwlink/?LinkId=827846
// for the documentation about the extensions.json format
"recommendations": [
"platformio.platformio-ide"
],
"unwantedRecommendations": [
"ms-vscode.cpptools-extension-pack"
]
}

View file

@ -0,0 +1,39 @@
This directory is intended for project header files.
A header file is a file containing C declarations and macro definitions
to be shared between several project source files. You request the use of a
header file in your project source file (C, C++, etc) located in `src` folder
by including it, with the C preprocessing directive `#include'.
```src/main.c
#include "header.h"
int main (void)
{
...
}
```
Including a header file produces the same results as copying the header file
into each source file that needs it. Such copying would be time-consuming
and error-prone. With a header file, the related declarations appear
in only one place. If they need to be changed, they can be changed in one
place, and programs that include the header file will automatically use the
new version when next recompiled. The header file eliminates the labor of
finding and changing all the copies as well as the risk that a failure to
find one copy will result in inconsistencies within a program.
In C, the usual convention is to give header files names that end with `.h'.
It is most portable to use only letters, digits, dashes, and underscores in
header file names, and at most one dot.
Read more about using header files in official GCC documentation:
* Include Syntax
* Include Operation
* Once-Only Headers
* Computed Includes
https://gcc.gnu.org/onlinedocs/cpp/Header-Files.html

View file

@ -0,0 +1,46 @@
This directory is intended for project specific (private) libraries.
PlatformIO will compile them to static libraries and link into executable file.
The source code of each library should be placed in a an own separate directory
("lib/your_library_name/[here are source files]").
For example, see a structure of the following two libraries `Foo` and `Bar`:
|--lib
| |
| |--Bar
| | |--docs
| | |--examples
| | |--src
| | |- Bar.c
| | |- Bar.h
| | |- library.json (optional, custom build options, etc) https://docs.platformio.org/page/librarymanager/config.html
| |
| |--Foo
| | |- Foo.c
| | |- Foo.h
| |
| |- README --> THIS FILE
|
|- platformio.ini
|--src
|- main.c
and a contents of `src/main.c`:
```
#include <Foo.h>
#include <Bar.h>
int main (void)
{
...
}
```
PlatformIO Library Dependency Finder will find automatically dependent
libraries scanning project source files.
More information about PlatformIO Library Dependency Finder
- https://docs.platformio.org/page/librarymanager/ldf.html

View file

@ -0,0 +1,19 @@
; PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[env:nanoatmega328]
platform = atmelavr
board = nanoatmega328new
framework = arduino
lib_deps =
laurb9/StepperDriver@^1.3.1
monitor_speed = 115200

View file

@ -3,19 +3,43 @@
#include <stdint.h>
#include <string.h>
#include <EEPROM.h>
// #include <EEPROM.h>
#include "Entropy.h"
#include "sha1.h"
#include "Wire.h"
#define PIN_HORN 6
#define PIN_OPEN 5
#define PIN_CLOSE 4
#define PIN_1WIRE 13
#include <Arduino.h>
// Motor steps per revolution. Most steppers are 200 steps or 1.8 degrees/step
#define MOTOR_STEPS 2
#define RPM 60
#define DIR A6
// #define STEP A7
#define STEP 9
#include "A4988.h"
A4988 stepper(MOTOR_STEPS, DIR, STEP);
#define INPUT_SOLENOID 7
#define INPUT_HORN 3
#define PIN_LEDSOLENOID 6
#define PIN_LEDHORN 5
bool StateSolenoid = false;
bool StateHorn = false;
uint32_t SolenoidStartTime;
#define PIN_DOORPOWER A1
#define PIN_SOLENOID A3
#define PIN_HORN A2
#define PIN_OPEN 13
#define PIN_CLOSE A0
#define PIN_1WIRE 8
#define PIN_LEDGREEN 10
#define PIN_LEDRED 11
#define PIN_MAINS_POWER 9
#define PIN_MAINS_POWER 2
#define CMD_BUFSIZE 64
#define CMD_TIMEOUT 10000 //command timeout in milliseconds
@ -23,7 +47,8 @@
#define SECRETSIZE 8
#define ADDRSIZE 8
#define STORAGESIZE (SECRETSIZE + ADDRSIZE)
#define EEPROMSIZE 1024
#define EEPROMDEVICEADDRESS 0x50
#define EEPROMSIZE 2048
#define SHA1SIZE 20
#define IBUTTON_SEARCH_TIMEOUT 60000 //timeout searching for ibutton
@ -144,20 +169,64 @@ void setup()
{
Serial.begin(115200);
Serial.println("DEBUG: Board started");
Wire.begin();
stepper.begin(RPM);
stepper.enable();
stepper.setMicrostep(1); // Set microstep mode to 1:1
pinMode(INPUT_SOLENOID, INPUT_PULLUP);
pinMode(INPUT_HORN, INPUT_PULLUP);
pinMode(PIN_LEDSOLENOID, OUTPUT);
pinMode(PIN_LEDHORN, OUTPUT);
pinMode(PIN_DOORPOWER, OUTPUT);
pinMode(PIN_SOLENOID, OUTPUT);
pinMode(PIN_OPEN, OUTPUT);
pinMode(PIN_CLOSE, OUTPUT);
pinMode(PIN_HORN, OUTPUT);
pinMode(PIN_HORN, OUTPUT);
pinMode(PIN_LEDGREEN, OUTPUT);
pinMode(PIN_LEDRED, OUTPUT);
pinMode(PIN_MAINS_POWER, INPUT);
digitalWrite(PIN_OPEN, LOW);
digitalWrite(PIN_CLOSE, LOW);
digitalWrite(PIN_DOORPOWER, LOW);
digitalWrite(PIN_HORN, LOW);
digitalWrite(PIN_SOLENOID, LOW);
SetLEDState(LEDState_Off);
Entropy.initialize();
}
void writeEEPROM(unsigned int eeaddress, byte data )
{
Wire.beginTransmission(EEPROMDEVICEADDRESS);
Wire.write((int)(eeaddress >> 8)); // MSB
Wire.write((int)(eeaddress & 0xFF)); // LSB
Wire.write(data);
Wire.endTransmission();
delay(5);
}
byte readEEPROM(unsigned int eeaddress )
{
byte rdata = 0xFF;
Wire.beginTransmission(EEPROMDEVICEADDRESS);
Wire.write((int)(eeaddress >> 8)); // MSB
Wire.write((int)(eeaddress & 0xFF)); // LSB
Wire.endTransmission();
Wire.requestFrom(EEPROMDEVICEADDRESS,1);
if (Wire.available()) rdata = Wire.read();
return rdata;
}
void AddButton(uint8_t* addr, uint8_t* secret)
{
for (uint16_t i = 0; i < EEPROMSIZE / STORAGESIZE; i++)
@ -166,7 +235,7 @@ void AddButton(uint8_t* addr, uint8_t* secret)
uint16_t startaddr = i * STORAGESIZE;
for (uint16_t j = 0; j < ADDRSIZE; j++)
{
uint8_t eeprombyte = EEPROM.read(startaddr + j);
uint8_t eeprombyte = readEEPROM(startaddr + j);
if (eeprombyte != 0xFF && eeprombyte != addr[j])
{
emptyslot = false;
@ -177,10 +246,10 @@ void AddButton(uint8_t* addr, uint8_t* secret)
if (emptyslot)
{
for (uint16_t j = 0; j < ADDRSIZE; j++)
EEPROM.write(startaddr + j, addr[j]);
writeEEPROM(startaddr + j, addr[j]);
for (uint16_t j = 0; j < SECRETSIZE; j++)
EEPROM.write(startaddr + j + ADDRSIZE, secret[j]);
writeEEPROM(startaddr + j + ADDRSIZE, secret[j]);
Serialprintf("DEBUG: stored button in slot %i\n", i);
@ -199,7 +268,7 @@ void RemoveButton(uint8_t* addr)
bool sameaddr = true;
for (uint16_t j = 0; j < ADDRSIZE; j++)
{
uint8_t eeprombyte = EEPROM.read(startaddr + j);
uint8_t eeprombyte = readEEPROM(startaddr + j);
if (eeprombyte != addr[j])
{
sameaddr = false;
@ -212,7 +281,7 @@ void RemoveButton(uint8_t* addr)
Serialprintf("DEBUG: erasing slot %i\n", i);
for (uint16_t j = 0; j < STORAGESIZE; j++)
EEPROM.write(startaddr + j, 0xFF);
writeEEPROM(startaddr + j, 0xFF);
}
}
@ -225,7 +294,7 @@ bool GetButtonSecret(uint8_t* addr, uint8_t* secret)
bool isempty = true;
for (uint16_t j = 0; j < ADDRSIZE; j++)
{
uint8_t eeprombyte = EEPROM.read(startaddr + j);
uint8_t eeprombyte = readEEPROM(startaddr + j);
if (isempty && eeprombyte != 0xFF)
isempty = false;
@ -244,7 +313,7 @@ bool GetButtonSecret(uint8_t* addr, uint8_t* secret)
Serialprintf("DEBUG: getting secret from slot %i\n", i);
for (uint16_t j = 0; j < SECRETSIZE; j++)
secret[j] = EEPROM.read(startaddr + j + ADDRSIZE);
secret[j] = readEEPROM(startaddr + j + ADDRSIZE);
return true;
}
@ -266,7 +335,7 @@ void ListButtons()
bool isempty = true;
for (uint16_t j = 0; j < ADDRSIZE; j++)
{
uint8_t eeprombyte = EEPROM.read(startaddr + j);
uint8_t eeprombyte = readEEPROM(startaddr + j);
if (isempty && eeprombyte != 0xFF)
isempty = false;
@ -501,28 +570,25 @@ void ToggleLock()
{
g_lockopen = false;
Serial.println("closing lock");
for (uint8_t i = 0; i < 3; i++)
{
digitalWrite(PIN_CLOSE, HIGH);
DelayLEDs(BUTTON_TIME);
digitalWrite(PIN_CLOSE, LOW);
DelayLEDs(TOGGLE_TIME - BUTTON_TIME);
}
digitalWrite(PIN_DOORPOWER, HIGH);
digitalWrite(PIN_CLOSE, HIGH);
DelayLEDs(BUTTON_TIME);
DelayLEDs(TOGGLE_TIME - BUTTON_TIME);
}
else
{
g_lockopen = true;
Serial.println("opening lock");
for (uint8_t i = 0; i < 3; i++)
{
digitalWrite(PIN_OPEN, HIGH);
DelayLEDs(BUTTON_TIME);
digitalWrite(PIN_OPEN, LOW);
DelayLEDs(TOGGLE_TIME - BUTTON_TIME);
}
digitalWrite(PIN_DOORPOWER, HIGH);
digitalWrite(PIN_OPEN, HIGH);
DelayLEDs(BUTTON_TIME);
DelayLEDs(TOGGLE_TIME - BUTTON_TIME);
}
DelayLEDs(4000);
digitalWrite(PIN_OPEN, LOW);
digitalWrite(PIN_CLOSE, LOW);
digitalWrite(PIN_DOORPOWER, LOW);
Serial.println("finished lock action");
}
@ -570,6 +636,15 @@ void loop()
Serial.print("iButton authenticated\n");
ToggleLock();
deniedcount = 0;
if(g_lockopen == true){
StateSolenoid = true;
SolenoidStartTime = millis();
Serial.print("Solenoid activated\n");
digitalWrite(PIN_SOLENOID, HIGH);
stepper.move(MOTOR_STEPS*(RPM/60)*10);
}
}
else
{
@ -592,6 +667,34 @@ void loop()
}
ProcessLEDs();
digitalWrite(PIN_LEDSOLENOID, HIGH);
digitalWrite(PIN_LEDHORN, HIGH);
if (digitalRead(INPUT_SOLENOID) == LOW) {
if(StateSolenoid == false){
StateSolenoid = true;
SolenoidStartTime = millis();
Serial.print("Solenoid activated\n");
digitalWrite(PIN_SOLENOID, HIGH);
stepper.move(MOTOR_STEPS*(RPM/60)*10);
}
}
if(StateSolenoid == true && ((millis() - SolenoidStartTime) > (5*1000)) ){
digitalWrite(PIN_SOLENOID, LOW);
StateSolenoid = false;
}
if (digitalRead(INPUT_HORN) == LOW) {
if(StateHorn == false){
StateHorn = true;
Serial.print("Horn activated\n");
digitalWrite(PIN_HORN, HIGH);
}
}else{
StateHorn = false;
digitalWrite(PIN_HORN, LOW);
}
}
}

View file

@ -0,0 +1,11 @@
This directory is intended for PlatformIO Unit Testing and project tests.
Unit Testing is a software testing method by which individual units of
source code, sets of one or more MCU program modules together with associated
control data, usage procedures, and operating procedures, are tested to
determine whether they are fit for use. Unit testing finds problems early
in the development cycle.
More information about PlatformIO Unit Testing:
- https://docs.platformio.org/page/plus/unit-testing.html

5
bitlair_doorduino_door/.gitignore vendored Normal file
View file

@ -0,0 +1,5 @@
.pio
.vscode/.browse.c_cpp.db*
.vscode/c_cpp_properties.json
.vscode/launch.json
.vscode/ipch

View file

@ -0,0 +1,10 @@
{
// See http://go.microsoft.com/fwlink/?LinkId=827846
// for the documentation about the extensions.json format
"recommendations": [
"platformio.platformio-ide"
],
"unwantedRecommendations": [
"ms-vscode.cpptools-extension-pack"
]
}

View file

@ -0,0 +1,39 @@
This directory is intended for project header files.
A header file is a file containing C declarations and macro definitions
to be shared between several project source files. You request the use of a
header file in your project source file (C, C++, etc) located in `src` folder
by including it, with the C preprocessing directive `#include'.
```src/main.c
#include "header.h"
int main (void)
{
...
}
```
Including a header file produces the same results as copying the header file
into each source file that needs it. Such copying would be time-consuming
and error-prone. With a header file, the related declarations appear
in only one place. If they need to be changed, they can be changed in one
place, and programs that include the header file will automatically use the
new version when next recompiled. The header file eliminates the labor of
finding and changing all the copies as well as the risk that a failure to
find one copy will result in inconsistencies within a program.
In C, the usual convention is to give header files names that end with `.h'.
It is most portable to use only letters, digits, dashes, and underscores in
header file names, and at most one dot.
Read more about using header files in official GCC documentation:
* Include Syntax
* Include Operation
* Once-Only Headers
* Computed Includes
https://gcc.gnu.org/onlinedocs/cpp/Header-Files.html

View file

@ -0,0 +1,46 @@
This directory is intended for project specific (private) libraries.
PlatformIO will compile them to static libraries and link into executable file.
The source code of each library should be placed in a an own separate directory
("lib/your_library_name/[here are source files]").
For example, see a structure of the following two libraries `Foo` and `Bar`:
|--lib
| |
| |--Bar
| | |--docs
| | |--examples
| | |--src
| | |- Bar.c
| | |- Bar.h
| | |- library.json (optional, custom build options, etc) https://docs.platformio.org/page/librarymanager/config.html
| |
| |--Foo
| | |- Foo.c
| | |- Foo.h
| |
| |- README --> THIS FILE
|
|- platformio.ini
|--src
|- main.c
and a contents of `src/main.c`:
```
#include <Foo.h>
#include <Bar.h>
int main (void)
{
...
}
```
PlatformIO Library Dependency Finder will find automatically dependent
libraries scanning project source files.
More information about PlatformIO Library Dependency Finder
- https://docs.platformio.org/page/librarymanager/ldf.html

View file

@ -0,0 +1,20 @@
; PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[env:prominiatmega328]
platform = atmelavr
board = pro16MHzatmega328
framework = arduino
lib_deps =
laurb9/StepperDriver@^1.4.1
https://github.com/sosandroid/AMS_AS5048B.git
monitor_speed = 115200

View file

@ -0,0 +1,145 @@
#include <Arduino.h>
// this pin should connect to Ground when want to stop the motor
#define STOPPER_PIN 4
// Motor steps per revolution. Most steppers are 200 steps or 1.8 degrees/step
#define MOTOR_STEPS 400
#define RPM 60
// Acceleration and deceleration values are always in FULL steps / s^2
#define MOTOR_ACCEL 2000
#define MOTOR_DECEL 1000
// Microstepping mode. If you hardwired it to save pins, set to the same value here.
#define MICROSTEPS 8
#define DIR 10
#define STEP 11
#define ENABLE A3 // optional (just delete ENABLE from everywhere if not used)
#define SLEEP 12
#define RESET 13
#include "A4988.h"
#define MS1 A2
#define MS2 A1
#define MS3 A0
A4988 stepper(MOTOR_STEPS, DIR, STEP, ENABLE, MS1, MS2, MS3);
#include <ams_as5048b.h>
//unit consts
#define U_RAW 1
#define U_TRN 2
#define U_DEG 3
#define U_RAD 4
#define U_GRAD 5
#define U_MOA 6
#define U_SOA 7
#define U_MILNATO 8
#define U_MILSE 9
#define U_MILRU 10
AMS_AS5048B mysensor;
#define DOOR_OPEN 3
#define DOOR_CLOSE 2
#define STATE_IDLE 0
#define STATE_OPEN 1
#define STATE_CLOSE 2
int state = STATE_IDLE;
int angle_prev = 0;
int angle = 0;
int angle_steps = 0;
void setup() {
Serial.begin(115200);
pinMode(SLEEP, OUTPUT);
pinMode(RESET, OUTPUT);
digitalWrite(SLEEP, HIGH);
digitalWrite(RESET, HIGH);
// Configure stopper pin to read HIGH unless grounded
pinMode(STOPPER_PIN, INPUT_PULLUP);
stepper.begin(RPM, MICROSTEPS);
stepper.disable();
//stepper.setSpeedProfile(stepper.LINEAR_SPEED, MOTOR_ACCEL, MOTOR_DECEL);
stepper.setSpeedProfile(stepper.CONSTANT_SPEED, MOTOR_ACCEL, MOTOR_DECEL);
//init AMS_AS5048B object
mysensor.begin();
pinMode(DOOR_OPEN, INPUT);
pinMode(DOOR_CLOSE, INPUT);
Serial.println("START");
stepper.setEnableActiveState(LOW);
// stepper.enable();
// stepper.rotate(360);
// Serial.println("START2");
if (digitalRead(DOOR_OPEN) == HIGH && state == STATE_IDLE){
state = STATE_OPEN;
Serial.println("RECEIVED OPEN");
stepper.enable();
stepper.startRotate(-900);
}
if (digitalRead(DOOR_CLOSE) == HIGH && state == STATE_IDLE){
state = STATE_CLOSE;
Serial.println("RECEIVED CLOSE");
stepper.enable();
stepper.startRotate(900);
}
}
void loop() {
static int step = 0;
if(state != STATE_IDLE && millis()%50 == 0){
angle_prev = angle;
angle = mysensor.angleR(U_DEG, true);
angle_steps++;
Serial.print("Time : ");
Serial.print(millis(), DEC);
Serial.print(" Angle : ");
Serial.print(angle, DEC);
Serial.print(" angle prev : ");
Serial.println(angle_prev, DEC);
if(angle_steps > 5 && (angle_prev - angle) >= -5 && (angle_prev - angle) <= 5){
Serial.println("STOPPER REACHED");
stepper.stop();
stepper.disable();
state = STATE_IDLE;
step = 0;
angle_steps = 0;
delay(10000);
Serial.println("FINISHED");
}
}
// motor control loop - send pulse and return how long to wait until next pulse
unsigned wait_time = stepper.nextAction();
// Serial.println(wait_time);
step++;
// 0 wait time indicates the motor has stopped
if (state != STATE_IDLE && wait_time <= 0) {
stepper.disable(); // comment out to keep motor powered
Serial.println("END");
state = STATE_IDLE;
step = 0;
angle_steps = 0;
delay(10000);
Serial.println("FINISHED");
}
}

View file

@ -0,0 +1,11 @@
This directory is intended for PlatformIO Unit Testing and project tests.
Unit Testing is a software testing method by which individual units of
source code, sets of one or more MCU program modules together with associated
control data, usage procedures, and operating procedures, are tested to
determine whether they are fit for use. Unit testing finds problems early
in the development cycle.
More information about PlatformIO Unit Testing:
- https://docs.platformio.org/page/plus/unit-testing.html

5
bitlair_doorduino_inner/.gitignore vendored Normal file
View file

@ -0,0 +1,5 @@
.pio
.vscode/.browse.c_cpp.db*
.vscode/c_cpp_properties.json
.vscode/launch.json
.vscode/ipch

View file

@ -0,0 +1,10 @@
{
// See http://go.microsoft.com/fwlink/?LinkId=827846
// for the documentation about the extensions.json format
"recommendations": [
"platformio.platformio-ide"
],
"unwantedRecommendations": [
"ms-vscode.cpptools-extension-pack"
]
}

View file

@ -0,0 +1,39 @@
This directory is intended for project header files.
A header file is a file containing C declarations and macro definitions
to be shared between several project source files. You request the use of a
header file in your project source file (C, C++, etc) located in `src` folder
by including it, with the C preprocessing directive `#include'.
```src/main.c
#include "header.h"
int main (void)
{
...
}
```
Including a header file produces the same results as copying the header file
into each source file that needs it. Such copying would be time-consuming
and error-prone. With a header file, the related declarations appear
in only one place. If they need to be changed, they can be changed in one
place, and programs that include the header file will automatically use the
new version when next recompiled. The header file eliminates the labor of
finding and changing all the copies as well as the risk that a failure to
find one copy will result in inconsistencies within a program.
In C, the usual convention is to give header files names that end with `.h'.
It is most portable to use only letters, digits, dashes, and underscores in
header file names, and at most one dot.
Read more about using header files in official GCC documentation:
* Include Syntax
* Include Operation
* Once-Only Headers
* Computed Includes
https://gcc.gnu.org/onlinedocs/cpp/Header-Files.html

View file

@ -0,0 +1,46 @@
This directory is intended for project specific (private) libraries.
PlatformIO will compile them to static libraries and link into executable file.
The source code of each library should be placed in a an own separate directory
("lib/your_library_name/[here are source files]").
For example, see a structure of the following two libraries `Foo` and `Bar`:
|--lib
| |
| |--Bar
| | |--docs
| | |--examples
| | |--src
| | |- Bar.c
| | |- Bar.h
| | |- library.json (optional, custom build options, etc) https://docs.platformio.org/page/librarymanager/config.html
| |
| |--Foo
| | |- Foo.c
| | |- Foo.h
| |
| |- README --> THIS FILE
|
|- platformio.ini
|--src
|- main.c
and a contents of `src/main.c`:
```
#include <Foo.h>
#include <Bar.h>
int main (void)
{
...
}
```
PlatformIO Library Dependency Finder will find automatically dependent
libraries scanning project source files.
More information about PlatformIO Library Dependency Finder
- https://docs.platformio.org/page/librarymanager/ldf.html

View file

@ -0,0 +1,19 @@
; PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[env:nanoatmega328]
platform = atmelavr
board = nanoatmega328new
framework = arduino
lib_deps =
laurb9/StepperDriver@^1.3.1
monitor_speed = 115200

View file

@ -0,0 +1,344 @@
// Entropy - A entropy (random number) generator for the Arduino
// The latest version of this library will always be stored in the following
// google code repository:
// http://code.google.com/p/avr-hardware-random-number-generation/source/browse/#git%2FEntropy
// with more information available on the libraries wiki page
// http://code.google.com/p/avr-hardware-random-number-generation/wiki/WikiAVRentropy
//
// Copyright 2014 by Walter Anderson
//
// This file is part of Entropy, an Arduino library.
// Entropy is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Entropy is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Entropy. If not, see <http://www.gnu.org/licenses/>.
#include <Arduino.h>
#include "Entropy.h"
const uint8_t WDT_MAX_8INT=0xFF;
const uint16_t WDT_MAX_16INT=0xFFFF;
const uint32_t WDT_MAX_32INT=0xFFFFFFFF;
// Since the Due TRNG is so fast we don't need a circular buffer for it
#ifndef ARDUINO_SAM_DUE
const uint8_t gWDT_buffer_SIZE=32;
const uint8_t WDT_POOL_SIZE=8;
uint8_t gWDT_buffer[gWDT_buffer_SIZE];
uint8_t gWDT_buffer_position;
uint8_t gWDT_loop_counter;
volatile uint8_t gWDT_pool_start;
volatile uint8_t gWDT_pool_end;
volatile uint8_t gWDT_pool_count;
volatile uint32_t gWDT_entropy_pool[WDT_POOL_SIZE];
#endif
// This function initializes the global variables needed to implement the circular entropy pool and
// the buffer that holds the raw Timer 1 values that are used to create the entropy pool. It then
// Initializes the Watch Dog Timer (WDT) to perform an interrupt every 2048 clock cycles, (about
// 16 ms) which is as fast as it can be set.
void EntropyClass::initialize(void)
{
#ifndef ARDUINO_SAM_DUE
gWDT_buffer_position=0;
gWDT_pool_start = 0;
gWDT_pool_end = 0;
gWDT_pool_count = 0;
#endif
#if defined(__AVR__)
cli(); // Temporarily turn off interrupts, until WDT configured
MCUSR = 0; // Use the MCU status register to reset flags for WDR, BOR, EXTR, and POWR
_WD_CONTROL_REG |= (1<<_WD_CHANGE_BIT) | (1<<WDE);
// WDTCSR |= _BV(WDCE) | _BV(WDE);// WDT control register, This sets the Watchdog Change Enable (WDCE) flag, which is needed to set the
_WD_CONTROL_REG = _BV(WDIE); // Watchdog system reset (WDE) enable and the Watchdog interrupt enable (WDIE)
sei(); // Turn interupts on
#elif defined(ARDUINO_SAM_DUE)
pmc_enable_periph_clk(ID_TRNG);
TRNG->TRNG_IDR = 0xFFFFFFFF;
TRNG->TRNG_CR = TRNG_CR_KEY(0x524e47) | TRNG_CR_ENABLE;
#elif defined(__arm__) && defined(TEENSYDUINO)
SIM_SCGC5 |= SIM_SCGC5_LPTIMER;
LPTMR0_CSR = 0b10000100;
LPTMR0_PSR = 0b00000101; // PCS=01 : 1 kHz clock
LPTMR0_CMR = 0x0006; // smaller number = faster random numbers...
LPTMR0_CSR = 0b01000101;
NVIC_ENABLE_IRQ(IRQ_LPTMR);
#endif
}
// This function returns a uniformly distributed random integer in the range
// of [0,0xFFFFFFFF] as long as some entropy exists in the pool and a 0
// otherwise. To ensure a proper random return the available() function
// should be called first to ensure that entropy exists.
//
// The pool is implemented as an 8 value circular buffer
uint32_t EntropyClass::random(void)
{
#ifdef ARDUINO_SAM_DUE
while (! (TRNG->TRNG_ISR & TRNG_ISR_DATRDY))
;
retVal = TRNG->TRNG_ODATA;
#else
uint8_t waiting;
while (gWDT_pool_count < 1)
waiting += 1;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
{
retVal = gWDT_entropy_pool[gWDT_pool_start];
gWDT_pool_start = (gWDT_pool_start + 1) % WDT_POOL_SIZE;
--gWDT_pool_count;
}
#endif
return(retVal);
}
// This function returns one byte of a single 32-bit entropy value, while preserving the remaining bytes to
// be returned upon successive calls to the method. This makes best use of the available entropy pool when
// only bytes size chunks of entropy are needed. Not available to public use since there is a method of using
// the default random method for the end-user to achieve the same results. This internal method is for providing
// that capability to the random method, shown below
uint8_t EntropyClass::random8(void)
{
static uint8_t byte_position=0;
uint8_t retVal8;
if (byte_position == 0)
share_entropy.int32 = random();
retVal8 = share_entropy.int8[byte_position++];
byte_position = byte_position % 4;
return(retVal8);
}
// This function returns one word of a single 32-bit entropy value, while preserving the remaining word to
// be returned upon successive calls to the method. This makes best use of the available entropy pool when
// only word sized chunks of entropy are needed. Not available to public use since there is a method of using
// the default random method for the end-user to achieve the same results. This internal method is for providing
// that capability to the random method, shown below
uint16_t EntropyClass::random16(void)
{
static uint8_t word_position=0;
uint16_t retVal16;
if (word_position == 0)
share_entropy.int32 = random();
retVal16 = share_entropy.int16[word_position++];
word_position = word_position % 2;
return(retVal16);
}
uint8_t EntropyClass::randomByte(void)
{
return random8();
}
uint16_t EntropyClass::randomWord(void)
{
return random16();
}
// This function returns a uniformly distributed integer in the range of
// of [0,max). The added complexity of this function is required to ensure
// a uniform distribution since the naive modulus max (% max) introduces
// bias for all values of max that are not powers of two.
//
// The loops below are needed, because there is a small and non-uniform chance
// That the division below will yield an answer = max, so we just get
// the next random value until answer < max. Which prevents the introduction
// of bias caused by the division process. This is why we can't use the
// simpler modulus operation which introduces significant bias for divisors
// that aren't a power of two
uint32_t EntropyClass::random(uint32_t max)
{
uint32_t slice;
if (max < 2)
retVal=0;
else
{
retVal = WDT_MAX_32INT;
if (max <= WDT_MAX_8INT) // If only byte values are needed, make best use of entropy
{ // by diving the long into four bytes and using individually
slice = WDT_MAX_8INT / max;
while (retVal >= max)
retVal = random8() / slice;
}
else if (max <= WDT_MAX_16INT) // If only word values are need, make best use of entropy
{ // by diving the long into two words and using individually
slice = WDT_MAX_16INT / max;
while (retVal >= max)
retVal = random16() / slice;
}
else
{
slice = WDT_MAX_32INT / max;
while (retVal >= max)
retVal = random() / slice;
}
}
return(retVal);
}
// This function returns a uniformly distributed integer in the range of
// of [min,max).
uint32_t EntropyClass::random(uint32_t min, uint32_t max)
{
uint32_t tmp_random, tmax;
tmax = max - min;
if (tmax < 1)
retVal=min;
else
{
tmp_random = random(tmax);
retVal = min + tmp_random;
}
return(retVal);
}
// This function returns a uniformly distributed single precision floating point
// in the range of [0.0,1.0)
float EntropyClass::randomf(void)
{
float fRetVal;
// Since c++ doesn't allow bit manipulations of floating point types, we are
// using integer type and arrange its bit pattern to follow the IEEE754 bit
// pattern for single precision floating point value in the range of 1.0 - 2.0
uint32_t tmp_random = random();
tmp_random = (tmp_random & 0x007FFFFF) | 0x3F800000;
// We then copy that binary representation from the temporary integer to the
// returned floating point value
memcpy((void *) &fRetVal, (void *) &tmp_random, sizeof(fRetVal));
// Now translate the value back to its intended range by subtracting 1.0
fRetVal = fRetVal - 1.0;
return (fRetVal);
}
// This function returns a uniformly distributed single precision floating point
// in the range of [0.0, max)
float EntropyClass::randomf(float max)
{
float fRetVal;
fRetVal = randomf() * max;
return(fRetVal);
}
// This function returns a uniformly distributed single precision floating point
// in the range of [min, max)
float EntropyClass::randomf(float min,float max)
{
float fRetVal;
float tmax;
tmax = max - min;
fRetVal = (randomf() * tmax) + min;
return(fRetVal);
}
// This function implements the Marsaglia polar method of converting a uniformly
// distributed random numbers to a normaly distributed (bell curve) with the
// mean and standard deviation specified. This type of random number is useful
// for a variety of purposes, like Monte Carlo simulations.
float EntropyClass::rnorm(float mean, float stdDev)
{
static float spare;
static float u1;
static float u2;
static float s;
static bool isSpareReady = false;
if (isSpareReady)
{
isSpareReady = false;
return ((spare * stdDev) + mean);
} else {
do {
u1 = (randomf() * 2) - 1;
u2 = (randomf() * 2) - 1;
s = (u1 * u1) + (u2 * u2);
} while (s >= 1.0);
s = sqrt(-2.0 * log(s) / s);
spare = u2 * s;
isSpareReady = true;
return(mean + (stdDev * u1 * s));
}
}
// This function returns a unsigned char (8-bit) with the number of unsigned long values
// in the entropy pool
uint8_t EntropyClass::available(void)
{
#ifdef ARDUINO_SAM_DUE
return(TRNG->TRNG_ISR & TRNG_ISR_DATRDY);
#else
return(gWDT_pool_count);
#endif
}
// Circular buffer is not needed with the speed of the Arduino Due trng hardware generator
#ifndef ARDUINO_SAM_DUE
// This interrupt service routine is called every time the WDT interrupt is triggered.
// With the default configuration that is approximately once every 16ms, producing
// approximately two 32-bit integer values every second.
//
// The pool is implemented as an 8 value circular buffer
static void isr_hardware_neutral(uint8_t val)
{
gWDT_buffer[gWDT_buffer_position] = val;
gWDT_buffer_position++; // every time the WDT interrupt is triggered
if (gWDT_buffer_position >= gWDT_buffer_SIZE)
{
gWDT_pool_end = (gWDT_pool_start + gWDT_pool_count) % WDT_POOL_SIZE;
// The following code is an implementation of Jenkin's one at a time hash
// This hash function has had preliminary testing to verify that it
// produces reasonably uniform random results when using WDT jitter
// on a variety of Arduino platforms
for(gWDT_loop_counter = 0; gWDT_loop_counter < gWDT_buffer_SIZE; ++gWDT_loop_counter)
{
gWDT_entropy_pool[gWDT_pool_end] += gWDT_buffer[gWDT_loop_counter];
gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 10);
gWDT_entropy_pool[gWDT_pool_end] ^= (gWDT_entropy_pool[gWDT_pool_end] >> 6);
}
gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 3);
gWDT_entropy_pool[gWDT_pool_end] ^= (gWDT_entropy_pool[gWDT_pool_end] >> 11);
gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 15);
gWDT_entropy_pool[gWDT_pool_end] = gWDT_entropy_pool[gWDT_pool_end];
gWDT_buffer_position = 0; // Start collecting the next 32 bytes of Timer 1 counts
if (gWDT_pool_count == WDT_POOL_SIZE) // The entropy pool is full
gWDT_pool_start = (gWDT_pool_start + 1) % WDT_POOL_SIZE;
else // Add another unsigned long (32 bits) to the entropy pool
++gWDT_pool_count;
}
}
#endif
#if defined( __AVR_ATtiny25__ ) || defined( __AVR_ATtiny45__ ) || defined( __AVR_ATtiny85__ )
ISR(WDT_vect)
{
isr_hardware_neutral(TCNT0);
}
#elif defined(__AVR__)
ISR(WDT_vect)
{
isr_hardware_neutral(TCNT1L); // Record the Timer 1 low byte (only one needed)
}
#elif defined(__arm__) && defined(TEENSYDUINO)
void lptmr_isr(void)
{
LPTMR0_CSR = 0b10000100;
LPTMR0_CSR = 0b01000101;
isr_hardware_neutral(SYST_CVR);
}
#endif
// The library implements a single global instance. There is no need, nor will the library
// work properly if multiple instances are created.
EntropyClass Entropy;

View file

@ -0,0 +1,73 @@
// Entropy - A entropy (random number) generator for the Arduino
//
// Copyright 2014 by Walter Anderson
//
// This file is part of Entropy, an Arduino library.
// Entropy is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Entropy is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Entropy. If not, see <http://www.gnu.org/licenses/>.
#ifndef Entropy_h
#define Entropy_h
#include <stdint.h>
// Separate the ARM Due headers we use
#ifdef ARDUINO_SAM_DUE
#include <sam.h>
#include <sam3xa/include/component/component_trng.h>
#endif
// Teensy required headers
#ifdef TEENSYDUINO
#include <util/atomic.h>
#endif
// Separate AVR headers from ARM headers
#ifdef __AVR__
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <util/atomic.h>
#endif
const uint32_t WDT_RETURN_BYTE=256;
const uint32_t WDT_RETURN_WORD=65536;
union ENTROPY_LONG_WORD
{
uint32_t int32;
uint16_t int16[2];
uint8_t int8[4];
};
class EntropyClass
{
public:
void initialize(void);
uint32_t random(void);
uint32_t random(uint32_t max);
uint32_t random(uint32_t min, uint32_t max);
uint8_t randomByte(void);
uint16_t randomWord(void);
float randomf(void);
float randomf(float max);
float randomf(float min, float max);
float rnorm(float mean, float stdDev);
uint8_t available(void);
private:
ENTROPY_LONG_WORD share_entropy;
uint32_t retVal;
uint8_t random8(void);
uint16_t random16(void);
};
extern EntropyClass Entropy;
#endif

View file

@ -0,0 +1,563 @@
/*
Copyright (c) 2007, Jim Studt (original old version - many contributors since)
The latest version of this library may be found at:
http://www.pjrc.com/teensy/td_libs_OneWire.html
OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since
January 2010. At the time, it was in need of many bug fixes, but had
been abandoned the original author (Jim Studt). None of the known
contributors were interested in maintaining OneWire. Paul typically
works on OneWire every 6 to 12 months. Patches usually wait that
long. If anyone is interested in more actively maintaining OneWire,
please contact Paul.
Version 2.3:
Unknonw chip fallback mode, Roger Clark
Teensy-LC compatibility, Paul Stoffregen
Search bug fix, Love Nystrom
Version 2.2:
Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com
Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030
Fix DS18B20 example negative temperature
Fix DS18B20 example's low res modes, Ken Butcher
Improve reset timing, Mark Tillotson
Add const qualifiers, Bertrik Sikken
Add initial value input to crc16, Bertrik Sikken
Add target_search() function, Scott Roberts
Version 2.1:
Arduino 1.0 compatibility, Paul Stoffregen
Improve temperature example, Paul Stoffregen
DS250x_PROM example, Guillermo Lovato
PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com
Improvements from Glenn Trewitt:
- crc16() now works
- check_crc16() does all of calculation/checking work.
- Added read_bytes() and write_bytes(), to reduce tedious loops.
- Added ds2408 example.
Delete very old, out-of-date readme file (info is here)
Version 2.0: Modifications by Paul Stoffregen, January 2010:
http://www.pjrc.com/teensy/td_libs_OneWire.html
Search fix from Robin James
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
Use direct optimized I/O in all cases
Disable interrupts during timing critical sections
(this solves many random communication errors)
Disable interrupts during read-modify-write I/O
Reduce RAM consumption by eliminating unnecessary
variables and trimming many to 8 bits
Optimize both crc8 - table version moved to flash
Modified to work with larger numbers of devices - avoids loop.
Tested in Arduino 11 alpha with 12 sensors.
26 Sept 2008 -- Robin James
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
Updated to work with arduino-0008 and to include skip() as of
2007/07/06. --RJL20
Modified to calculate the 8-bit CRC directly, avoiding the need for
the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010
-- Tom Pollard, Jan 23, 2008
Jim Studt's original library was modified by Josh Larios.
Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Much of the code was inspired by Derek Yerger's code, though I don't
think much of that remains. In any event that was..
(copyleft) 2006 by Derek Yerger - Free to distribute freely.
The CRC code was excerpted and inspired by the Dallas Semiconductor
sample code bearing this copyright.
//---------------------------------------------------------------------------
// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
// Except as contained in this notice, the name of Dallas Semiconductor
// shall not be used except as stated in the Dallas Semiconductor
// Branding Policy.
//--------------------------------------------------------------------------
*/
#include "OneWire.h"
OneWire::OneWire(uint8_t pin)
{
pinMode(pin, INPUT);
bitmask = PIN_TO_BITMASK(pin);
baseReg = PIN_TO_BASEREG(pin);
#if ONEWIRE_SEARCH
reset_search();
#endif
}
// Perform the onewire reset function. We will wait up to 250uS for
// the bus to come high, if it doesn't then it is broken or shorted
// and we return a 0;
//
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
//
uint8_t OneWire::reset(void)
{
IO_REG_TYPE mask = bitmask;
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
uint8_t r;
uint8_t retries = 125;
noInterrupts();
DIRECT_MODE_INPUT(reg, mask);
interrupts();
// wait until the wire is high... just in case
do {
if (--retries == 0) return 0;
delayMicroseconds(2);
} while ( !DIRECT_READ(reg, mask));
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
interrupts();
delayMicroseconds(480);
noInterrupts();
DIRECT_MODE_INPUT(reg, mask); // allow it to float
delayMicroseconds(70);
r = !DIRECT_READ(reg, mask);
interrupts();
delayMicroseconds(410);
return r;
}
//
// Write a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
void OneWire::write_bit(uint8_t v)
{
IO_REG_TYPE mask=bitmask;
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
if (v & 1) {
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
delayMicroseconds(10);
DIRECT_WRITE_HIGH(reg, mask); // drive output high
interrupts();
delayMicroseconds(55);
} else {
noInterrupts();
DIRECT_WRITE_LOW(reg, mask);
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
delayMicroseconds(65);
DIRECT_WRITE_HIGH(reg, mask); // drive output high
interrupts();
delayMicroseconds(5);
}
}
//
// Read a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
uint8_t OneWire::read_bit(void)
{
IO_REG_TYPE mask=bitmask;
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
uint8_t r;
noInterrupts();
DIRECT_MODE_OUTPUT(reg, mask);
DIRECT_WRITE_LOW(reg, mask);
delayMicroseconds(3);
DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise
delayMicroseconds(10);
r = DIRECT_READ(reg, mask);
interrupts();
delayMicroseconds(53);
return r;
}
//
// Write a byte. The writing code uses the active drivers to raise the
// pin high, if you need power after the write (e.g. DS18S20 in
// parasite power mode) then set 'power' to 1, otherwise the pin will
// go tri-state at the end of the write to avoid heating in a short or
// other mishap.
//
void OneWire::write(uint8_t v, uint8_t power /* = 0 */) {
uint8_t bitMask;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
OneWire::write_bit( (bitMask & v)?1:0);
}
if ( !power) {
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
}
}
void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) {
for (uint16_t i = 0 ; i < count ; i++)
write(buf[i]);
if (!power) {
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
DIRECT_WRITE_LOW(baseReg, bitmask);
interrupts();
}
}
//
// Read a byte
//
uint8_t OneWire::read() {
uint8_t bitMask;
uint8_t r = 0;
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
if ( OneWire::read_bit()) r |= bitMask;
}
return r;
}
void OneWire::read_bytes(uint8_t *buf, uint16_t count) {
for (uint16_t i = 0 ; i < count ; i++)
buf[i] = read();
}
//
// Do a ROM select
//
void OneWire::select(const uint8_t rom[8])
{
uint8_t i;
write(0x55); // Choose ROM
for (i = 0; i < 8; i++) write(rom[i]);
}
//
// Do a ROM skip
//
void OneWire::skip()
{
write(0xCC); // Skip ROM
}
void OneWire::depower()
{
noInterrupts();
DIRECT_MODE_INPUT(baseReg, bitmask);
interrupts();
}
#if ONEWIRE_SEARCH
//
// You need to use this function to start a search again from the beginning.
// You do not need to do it for the first search, though you could.
//
void OneWire::reset_search()
{
// reset the search state
LastDiscrepancy = 0;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
for(int i = 7; ; i--) {
ROM_NO[i] = 0;
if ( i == 0) break;
}
}
// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
//
void OneWire::target_search(uint8_t family_code)
{
// set the search state to find SearchFamily type devices
ROM_NO[0] = family_code;
for (uint8_t i = 1; i < 8; i++)
ROM_NO[i] = 0;
LastDiscrepancy = 64;
LastFamilyDiscrepancy = 0;
LastDeviceFlag = FALSE;
}
//
// Perform a search. If this function returns a '1' then it has
// enumerated the next device and you may retrieve the ROM from the
// OneWire::address variable. If there are no devices, no further
// devices, or something horrible happens in the middle of the
// enumeration then a 0 is returned. If a new device is found then
// its address is copied to newAddr. Use OneWire::reset_search() to
// start over.
//
// --- Replaced by the one from the Dallas Semiconductor web site ---
//--------------------------------------------------------------------------
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
// search state.
// Return TRUE : device found, ROM number in ROM_NO buffer
// FALSE : device not found, end of search
//
uint8_t OneWire::search(uint8_t *newAddr)
{
uint8_t id_bit_number;
uint8_t last_zero, rom_byte_number, search_result;
uint8_t id_bit, cmp_id_bit;
unsigned char rom_byte_mask, search_direction;
// initialize for search
id_bit_number = 1;
last_zero = 0;
rom_byte_number = 0;
rom_byte_mask = 1;
search_result = 0;
// if the last call was not the last one
if (!LastDeviceFlag)
{
// 1-Wire reset
if (!reset())
{
// reset the search
LastDiscrepancy = 0;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
return FALSE;
}
// issue the search command
write(0xF0);
// loop to do the search
do
{
// read a bit and its complement
id_bit = read_bit();
cmp_id_bit = read_bit();
// check for no devices on 1-wire
if ((id_bit == 1) && (cmp_id_bit == 1))
break;
else
{
// all devices coupled have 0 or 1
if (id_bit != cmp_id_bit)
search_direction = id_bit; // bit write value for search
else
{
// if this discrepancy if before the Last Discrepancy
// on a previous next then pick the same as last time
if (id_bit_number < LastDiscrepancy)
search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
else
// if equal to last pick 1, if not then pick 0
search_direction = (id_bit_number == LastDiscrepancy);
// if 0 was picked then record its position in LastZero
if (search_direction == 0)
{
last_zero = id_bit_number;
// check for Last discrepancy in family
if (last_zero < 9)
LastFamilyDiscrepancy = last_zero;
}
}
// set or clear the bit in the ROM byte rom_byte_number
// with mask rom_byte_mask
if (search_direction == 1)
ROM_NO[rom_byte_number] |= rom_byte_mask;
else
ROM_NO[rom_byte_number] &= ~rom_byte_mask;
// serial number search direction write bit
write_bit(search_direction);
// increment the byte counter id_bit_number
// and shift the mask rom_byte_mask
id_bit_number++;
rom_byte_mask <<= 1;
// if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
if (rom_byte_mask == 0)
{
rom_byte_number++;
rom_byte_mask = 1;
}
}
}
while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
// if the search was successful then
if (!(id_bit_number < 65))
{
// search successful so set LastDiscrepancy,LastDeviceFlag,search_result
LastDiscrepancy = last_zero;
// check for last device
if (LastDiscrepancy == 0)
LastDeviceFlag = TRUE;
search_result = TRUE;
}
}
// if no device found then reset counters so next 'search' will be like a first
if (!search_result || !ROM_NO[0])
{
LastDiscrepancy = 0;
LastDeviceFlag = FALSE;
LastFamilyDiscrepancy = 0;
search_result = FALSE;
} else {
for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
}
return search_result;
}
#endif
#if ONEWIRE_CRC
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
//
#if ONEWIRE_CRC8_TABLE
// This table comes from Dallas sample code where it is freely reusable,
// though Copyright (C) 2000 Dallas Semiconductor Corporation
static const uint8_t PROGMEM dscrc_table[] = {
0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};
//
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
// and the registers. (note: this might better be done without to
// table, it would probably be smaller and certainly fast enough
// compared to all those delayMicrosecond() calls. But I got
// confused, so I use this table from the examples.)
//
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
while (len--) {
crc = pgm_read_byte(dscrc_table + (crc ^ *addr++));
}
return crc;
}
#else
//
// Compute a Dallas Semiconductor 8 bit CRC directly.
// this is much slower, but much smaller, than the lookup table.
//
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
{
uint8_t crc = 0;
while (len--) {
uint8_t inbyte = *addr++;
for (uint8_t i = 8; i; i--) {
uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix) crc ^= 0x8C;
inbyte >>= 1;
}
}
return crc;
}
#endif
#if ONEWIRE_CRC16
bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc)
{
crc = ~crc16(input, len, crc);
return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
}
uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc)
{
static const uint8_t oddparity[16] =
{ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
for (uint16_t i = 0 ; i < len ; i++) {
// Even though we're just copying a byte from the input,
// we'll be doing 16-bit computation with it.
uint16_t cdata = input[i];
cdata = (cdata ^ crc) & 0xff;
crc >>= 8;
if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
crc ^= 0xC001;
cdata <<= 6;
crc ^= cdata;
cdata <<= 1;
crc ^= cdata;
}
return crc;
}
#endif
#endif

View file

@ -0,0 +1,250 @@
#ifndef OneWire_h
#define OneWire_h
#include <inttypes.h>
#if ARDUINO >= 100
#include "Arduino.h" // for delayMicroseconds, digitalPinToBitMask, etc
#else
#include "WProgram.h" // for delayMicroseconds
#include "pins_arduino.h" // for digitalPinToBitMask, etc
#endif
// You can exclude certain features from OneWire. In theory, this
// might save some space. In practice, the compiler automatically
// removes unused code (technically, the linker, using -fdata-sections
// and -ffunction-sections when compiling, and Wl,--gc-sections
// when linking), so most of these will not result in any code size
// reduction. Well, unless you try to use the missing features
// and redesign your program to not need them! ONEWIRE_CRC8_TABLE
// is the exception, because it selects a fast but large algorithm
// or a small but slow algorithm.
// you can exclude onewire_search by defining that to 0
#ifndef ONEWIRE_SEARCH
#define ONEWIRE_SEARCH 1
#endif
// You can exclude CRC checks altogether by defining this to 0
#ifndef ONEWIRE_CRC
#define ONEWIRE_CRC 1
#endif
// Select the table-lookup method of computing the 8-bit CRC
// by setting this to 1. The lookup table enlarges code size by
// about 250 bytes. It does NOT consume RAM (but did in very
// old versions of OneWire). If you disable this, a slower
// but very compact algorithm is used.
#ifndef ONEWIRE_CRC8_TABLE
#define ONEWIRE_CRC8_TABLE 1
#endif
// You can allow 16-bit CRC checks by defining this to 1
// (Note that ONEWIRE_CRC must also be 1.)
#ifndef ONEWIRE_CRC16
#define ONEWIRE_CRC16 1
#endif
#define FALSE 0
#define TRUE 1
// Platform specific I/O definitions
#if defined(__AVR__)
#define PIN_TO_BASEREG(pin) (portInputRegister(digitalPinToPort(pin)))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint8_t
#define IO_REG_ASM asm("r30")
#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+1)) |= (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+2)) &= ~(mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+2)) |= (mask))
#elif defined(__MK20DX128__) || defined(__MK20DX256__)
#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
#define PIN_TO_BITMASK(pin) (1)
#define IO_REG_TYPE uint8_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) (*((base)+512))
#define DIRECT_MODE_INPUT(base, mask) (*((base)+640) = 0)
#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+640) = 1)
#define DIRECT_WRITE_LOW(base, mask) (*((base)+256) = 1)
#define DIRECT_WRITE_HIGH(base, mask) (*((base)+128) = 1)
#elif defined(__MKL26Z64__)
#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint8_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) ((*((base)+16) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) (*((base)+20) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+20) |= (mask))
#define DIRECT_WRITE_LOW(base, mask) (*((base)+8) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) (*((base)+4) = (mask))
#elif defined(__SAM3X8E__)
// Arduino 1.5.1 may have a bug in delayMicroseconds() on Arduino Due.
// http://arduino.cc/forum/index.php/topic,141030.msg1076268.html#msg1076268
// If you have trouble with OneWire on Arduino Due, please check the
// status of delayMicroseconds() before reporting a bug in OneWire!
#define PIN_TO_BASEREG(pin) (&(digitalPinToPort(pin)->PIO_PER))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) (((*((base)+15)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+5)) = (mask))
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+4)) = (mask))
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+13)) = (mask))
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+12)) = (mask))
#ifndef PROGMEM
#define PROGMEM
#endif
#ifndef pgm_read_byte
#define pgm_read_byte(addr) (*(const uint8_t *)(addr))
#endif
#elif defined(__PIC32MX__)
#define PIN_TO_BASEREG(pin) (portModeRegister(digitalPinToPort(pin)))
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask) (((*(base+4)) & (mask)) ? 1 : 0) //PORTX + 0x10
#define DIRECT_MODE_INPUT(base, mask) ((*(base+2)) = (mask)) //TRISXSET + 0x08
#define DIRECT_MODE_OUTPUT(base, mask) ((*(base+1)) = (mask)) //TRISXCLR + 0x04
#define DIRECT_WRITE_LOW(base, mask) ((*(base+8+1)) = (mask)) //LATXCLR + 0x24
#define DIRECT_WRITE_HIGH(base, mask) ((*(base+8+2)) = (mask)) //LATXSET + 0x28
#else
#define PIN_TO_BASEREG(pin) (0)
#define PIN_TO_BITMASK(pin) (pin)
#define IO_REG_TYPE unsigned int
#define IO_REG_ASM
#define DIRECT_READ(base, pin) digitalRead(pin)
#define DIRECT_WRITE_LOW(base, pin) digitalWrite(pin, LOW)
#define DIRECT_WRITE_HIGH(base, pin) digitalWrite(pin, HIGH)
#define DIRECT_MODE_INPUT(base, pin) pinMode(pin,INPUT)
#define DIRECT_MODE_OUTPUT(base, pin) pinMode(pin,OUTPUT)
#warning "OneWire. Fallback mode. Using API calls for pinMode,digitalRead and digitalWrite. Operation of this library is not guaranteed on this architecture."
#endif
class OneWire
{
private:
IO_REG_TYPE bitmask;
volatile IO_REG_TYPE *baseReg;
#if ONEWIRE_SEARCH
// global search state
unsigned char ROM_NO[8];
uint8_t LastDiscrepancy;
uint8_t LastFamilyDiscrepancy;
uint8_t LastDeviceFlag;
#endif
public:
OneWire( uint8_t pin);
// Perform a 1-Wire reset cycle. Returns 1 if a device responds
// with a presence pulse. Returns 0 if there is no device or the
// bus is shorted or otherwise held low for more than 250uS
uint8_t reset(void);
// Issue a 1-Wire rom select command, you do the reset first.
void select(const uint8_t rom[8]);
// Issue a 1-Wire rom skip command, to address all on bus.
void skip(void);
// Write a byte. If 'power' is one then the wire is held high at
// the end for parasitically powered devices. You are responsible
// for eventually depowering it by calling depower() or doing
// another read or write.
void write(uint8_t v, uint8_t power = 0);
void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0);
// Read a byte.
uint8_t read(void);
void read_bytes(uint8_t *buf, uint16_t count);
// Write a bit. The bus is always left powered at the end, see
// note in write() about that.
void write_bit(uint8_t v);
// Read a bit.
uint8_t read_bit(void);
// Stop forcing power onto the bus. You only need to do this if
// you used the 'power' flag to write() or used a write_bit() call
// and aren't about to do another read or write. You would rather
// not leave this powered if you don't have to, just in case
// someone shorts your bus.
void depower(void);
#if ONEWIRE_SEARCH
// Clear the search state so that if will start from the beginning again.
void reset_search();
// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
void target_search(uint8_t family_code);
// Look for the next device. Returns 1 if a new address has been
// returned. A zero might mean that the bus is shorted, there are
// no devices, or you have already retrieved all of them. It
// might be a good idea to check the CRC to make sure you didn't
// get garbage. The order is deterministic. You will always get
// the same devices in the same order.
uint8_t search(uint8_t *newAddr);
#endif
#if ONEWIRE_CRC
// Compute a Dallas Semiconductor 8 bit CRC, these are used in the
// ROM and scratchpad registers.
static uint8_t crc8(const uint8_t *addr, uint8_t len);
#if ONEWIRE_CRC16
// Compute the 1-Wire CRC16 and compare it against the received CRC.
// Example usage (reading a DS2408):
// // Put everything in a buffer so we can compute the CRC easily.
// uint8_t buf[13];
// buf[0] = 0xF0; // Read PIO Registers
// buf[1] = 0x88; // LSB address
// buf[2] = 0x00; // MSB address
// WriteBytes(net, buf, 3); // Write 3 cmd bytes
// ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
// if (!CheckCRC16(buf, 11, &buf[11])) {
// // Handle error.
// }
//
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param inverted_crc - The two CRC16 bytes in the received data.
// This should just point into the received data,
// *not* at a 16-bit integer.
// @param crc - The crc starting value (optional)
// @return True, iff the CRC matches.
static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0);
// Compute a Dallas Semiconductor 16 bit CRC. This is required to check
// the integrity of data received from many 1-Wire devices. Note that the
// CRC computed here is *not* what you'll get from the 1-Wire network,
// for two reasons:
// 1) The CRC is transmitted bitwise inverted.
// 2) Depending on the endian-ness of your processor, the binary
// representation of the two-byte return value may have a different
// byte order than the two bytes you get from 1-Wire.
// @param input - Array of bytes to checksum.
// @param len - How many bytes to use.
// @param crc - The crc starting value (optional)
// @return The CRC16, as defined by Dallas Semiconductor.
static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0);
#endif
#endif
};
#endif

View file

@ -0,0 +1,325 @@
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
#include "OneWire.h"
#include "ds1961.h"
// commands used in the DS1961 standard
#define CMD_WRITE_SCRATCHPAD 0x0F
#define CMD_COMPUTE_NEXT_SECRET 0x33
#define CMD_COPY_SCRATCHPAD 0x55
#define CMD_LOAD_FIRST_SECRET 0x5A
#define CMD_REFRESH_SCRATCHPAD 0xA3
#define CMD_READ_AUTH_PAGE 0xA5
#define CMD_READ_SCRATCHPAD 0xAA
#define CMD_READ_MEMORY 0xF0
// memory ranges
#define MEM_DATA_PAGE_0 0x00
#define MEM_DATA_PAGE_1 0x20
#define MEM_DATA_PAGE_2 0x40
#define MEM_DATA_PAGE_3 0x60
#define MEM_SECRET 0x80
#define MEM_IDENTITY 0x90
// timing (ms)
#define T_CSHA 2 // actually 1.5
#define T_PROG 10
DS1961::DS1961(OneWire *oneWire)
{
ow = oneWire;
}
static bool ResetAndSelect(OneWire *ow, const uint8_t id[8])
{
if (!ow->reset()) {
return false;
}
ow->select((uint8_t *) id);
return true;
}
static bool WriteScratchPad(OneWire *ow, const uint8_t id[8], uint16_t addr, const uint8_t data[8])
{
uint8_t buf[11];
uint8_t crc[2];
int len = 0;
// reset and select
if (!ResetAndSelect(ow, id)) {
return false;
}
// perform write scratchpad command
buf[len++] = CMD_WRITE_SCRATCHPAD;
buf[len++] = (addr >> 0) & 0xFF; // 2 byte target address
buf[len++] = (addr >> 8) & 0xFF; // 2 byte target address
memcpy(buf + len, data, 8);
len += 8;
ow->write_bytes(buf, len);
ow->read_bytes(crc, 2);
return ow->check_crc16(buf, len, crc);
}
static bool RefreshScratchPad(OneWire *ow, const uint8_t id[8], uint16_t addr, const uint8_t data[8])
{
uint8_t buf[11];
uint8_t crc[2];
int len = 0;
// reset and select
if (!ResetAndSelect(ow, id)) {
return false;
}
// perform refresh scratchpad command
buf[len++] = CMD_REFRESH_SCRATCHPAD;
buf[len++] = (addr >> 0) & 0xFF; // 2 byte target address
buf[len++] = (addr >> 8) & 0xFF; // 2 byte target address
memcpy(buf + len, data, 8);
len += 8;
ow->write_bytes(buf, len);
ow->read_bytes(crc, 2);
return ow->check_crc16(buf, len, crc);
}
static bool ReadScratchPad(OneWire *ow, const uint8_t id[8], uint16_t *addr, uint8_t *es, uint8_t data[8])
{
uint8_t buf[12];
uint8_t crc[2];
int len = 0;
// reset and select
if (!ResetAndSelect(ow, id)) {
return false;
}
// send read scratchpad command
buf[len++] = CMD_READ_SCRATCHPAD;
ow->write_bytes(buf, len);
// get TA0/1 and ES
ow->read_bytes(buf + len, 3);
len += 3;
*addr = (buf[2] << 8) | buf[1];
*es = buf[3];
// get data
ow->read_bytes(buf + len, 8);
len += 8;
memcpy(data, buf + 4, 8);
// check CRC
ow->read_bytes(crc, 2);
return ow->check_crc16(buf, len, crc);
}
static bool CopyScratchPad(OneWire *ow, const uint8_t id[8], uint16_t addr, uint8_t es, const uint8_t mac[20])
{
uint8_t buf[4];
int len = 0;
uint8_t status;
// reset and select
if (!ResetAndSelect(ow, id)) {
return false;
}
// send copy scratchpad command + arguments
buf[len++] = CMD_COPY_SCRATCHPAD;
buf[len++] = (addr >> 0) & 0xFF; // 2 byte target address
buf[len++] = (addr >> 8) & 0xFF; // 2 byte target address
buf[len++] = es; // es
ow->write_bytes(buf, len, 1); // write and keep powered
// wait while MAC is calculated
delay(T_CSHA);
// send MAC
ow->write_bytes(mac, 20);
// wait 10 ms
delay(T_PROG);
ow->depower();
// check final status byte
status = ow->read();
return (status == 0xAA);
}
static bool ReadAuthPage(OneWire *ow, const uint8_t id[8], uint16_t addr, uint8_t data[32], uint8_t mac[20])
{
uint8_t buf[36];
uint8_t crc[2];
uint8_t status;
int len = 0;
// reset and select
if (!ResetAndSelect(ow, id)) {
return false;
}
// send command
buf[len++] = CMD_READ_AUTH_PAGE;
buf[len++] = (addr >> 0) & 0xFF;
buf[len++] = (addr >> 8) & 0xFF;
ow->write_bytes(buf, len);
// read data part + 0xFF
ow->read_bytes(buf + len, 33);
len += 33;
if (buf[35] != 0xFF) {
return false;
}
ow->read_bytes(crc, 2);
if (!ow->check_crc16(buf, len, crc)) {
return false;
}
memcpy(data, buf + 3, 32);
// read mac part
delay(T_CSHA);
ow->read_bytes(mac, 20);
ow->read_bytes(crc, 2);
if (!ow->check_crc16(mac, 20, crc)) {
return false;
}
// check final status byte
status = ow->read();
return (status == 0xAA);
}
static bool LoadFirstSecret(OneWire *ow, const uint8_t id[8], uint16_t addr, uint8_t es)
{
uint8_t status;
// reset and select
if (!ResetAndSelect(ow, id)) {
return false;
}
// write auth code
ow->write(CMD_LOAD_FIRST_SECRET);
ow->write((addr >> 0) & 0xFF);
ow->write((addr >> 8) & 0xFF);
ow->write(es, 1);
delay(T_PROG);
ow->depower();
status = ow->read();
return (status == 0xAA);
}
static bool ReadMemory(OneWire *ow, const uint8_t id[8], int addr, int len, uint8_t data[])
{
// reset and select
if (!ResetAndSelect(ow, id)) {
return false;
}
// write command/addr
ow->write(CMD_READ_MEMORY);
ow->write((addr >> 0) & 0xFF);
ow->write((addr >> 8) & 0xFF);
// read data
ow->read_bytes(data, len);
return true;
}
bool DS1961::ReadAuthWithChallenge(const uint8_t id[8], uint16_t addr, const uint8_t challenge[3], uint8_t data[32], uint8_t mac[20])
{
uint8_t scratchpad[8];
// put the challenge in the scratchpad
memset(scratchpad, 0, sizeof(scratchpad));
memcpy(scratchpad + 4, challenge, 3);
if (!WriteScratchPad(ow, id, addr, scratchpad)) {
// Serial.println("WriteScratchPad failed!");
return false;
}
// perform the authenticated read
if (!ReadAuthPage(ow, id, addr, data, mac)) {
// Serial.println("ReadAuthPage failed!");
return false;
}
return true;
}
bool DS1961::WriteSecret(const uint8_t id[8], const uint8_t secret[8])
{
uint16_t addr;
uint8_t es;
uint8_t data[8];
// write secret to scratch pad
if (!WriteScratchPad(ow, id, MEM_SECRET, secret)) {
// Serial.println("WriteScratchPad failed!");
return false;
}
// read scratch pad for auth code
if (!ReadScratchPad(ow, id, &addr, &es, data)) {
// Serial.println("ReadScratchPad failed!");
return false;
}
if (!LoadFirstSecret(ow, id, addr, es)) {
// Serial.println("LoadFirstSecret failed!");
return false;
}
return true;
}
/*
* Writes 8 bytes of data to specified address
*/
bool DS1961::WriteData(const uint8_t id[8], int addr, const uint8_t data[8], const uint8_t mac[20])
{
uint8_t spad[8];
uint16_t ad;
uint8_t es;
// write data into scratchpad
if (!WriteScratchPad(ow, id, addr, data)) {
Serial.println("WriteScratchPad failed!");
return false;
}
// read scratch pad for auth code
if (!ReadScratchPad(ow, id, &ad, &es, spad)) {
Serial.println("ReadScratchPad failed!");
return false;
}
// copy scratchpad to EEPROM
if (!CopyScratchPad(ow, id, ad, es, mac)) {
Serial.println("CopyScratchPad failed!");
return false;
}
// refresh scratchpad
if (!RefreshScratchPad(ow, id, addr, data)) {
Serial.println("RefreshScratchPad failed!");
return false;
}
// re-write with load first secret
if (!LoadFirstSecret(ow, id, addr, es)) {
Serial.println("LoadFirstSecret failed!");
return false;
}
return true;
}

View file

@ -0,0 +1,23 @@
#ifndef _DS1961_H_
#define _DS1961_H_
#include <stdbool.h>
#include <stdint.h>
#include "OneWire.h"
class DS1961 {
public:
DS1961(OneWire *oneWire);
bool WriteSecret(const uint8_t id[8], const uint8_t secret[8]);
bool ReadAuthWithChallenge(const uint8_t id[8], uint16_t addr, const uint8_t challenge[3], uint8_t data[32], uint8_t mac[20]);
bool WriteData(const uint8_t id[8], int addr, const uint8_t data[8], const uint8_t mac[20]);
private:
OneWire *ow;
};
#endif /* _DS1961_H_ */

View file

@ -0,0 +1,741 @@
#include "OneWire.h"
#include "ds1961.h"
#include <stdint.h>
#include <string.h>
// #include <EEPROM.h>
#include "Entropy.h"
#include "sha1.h"
#include "Wire.h"
#include <Arduino.h>
// Motor steps per revolution. Most steppers are 200 steps or 1.8 degrees/step
#define MOTOR_STEPS 2
#define RPM 60
#define DIR A6
// #define STEP A7
#define STEP 9
#include "A4988.h"
A4988 stepper(MOTOR_STEPS, DIR, STEP);
#define INPUT_SOLENOID 7
#define INPUT_HORN 3
#define PIN_LEDSOLENOID 6
#define PIN_LEDHORN 5
bool StateSolenoid = false;
bool StateHorn = false;
uint32_t SolenoidStartTime;
bool StateSolenoidInactive = false;
uint32_t SolenoidInactiveStartTime;
#define PIN_DOORPOWER A1
#define PIN_SOLENOID A3
#define PIN_HORN A2
#define PIN_OPEN 13
#define PIN_CLOSE A0
#define PIN_1WIRE 8
#define PIN_LEDGREEN 10
#define PIN_LEDRED 11
#define PIN_MAINS_POWER 2
#define CMD_BUFSIZE 64
#define CMD_TIMEOUT 10000 //command timeout in milliseconds
#define SECRETSIZE 8
#define ADDRSIZE 8
#define STORAGESIZE (SECRETSIZE + ADDRSIZE)
#define EEPROMDEVICEADDRESS 0x50
#define EEPROMSIZE 2048
#define SHA1SIZE 20
#define IBUTTON_SEARCH_TIMEOUT 60000 //timeout searching for ibutton
#define LEDState_Off 0
#define LEDState_Reading 1
#define LEDState_Authorized 2
#define LEDState_Busy 3
#define SPACEState_Open 1
#define SPACEState_Closed 0
#define htons(x) ( ((x)<<8) | (((x)>>8)&0xFF) )
#define ntohs(x) htons(x)
#define htonl(x) ( ((x)<<24 & 0xFF000000UL) | \
((x)<< 8 & 0x00FF0000UL) | \
((x)>> 8 & 0x0000FF00UL) | \
((x)>>24 & 0x000000FFUL) )
#define ntohl(x) htonl(x)
OneWire ds(PIN_1WIRE);
DS1961 ibutton(&ds);
bool HasMainsPower();
int Serialprintf (const char* fmt, ...) __attribute__ ((format (printf, 1, 2)));
int Serialprintf (const char* fmt, ...)
{
char buf[256];
va_list args;
va_start(args, fmt);
vsnprintf(buf, sizeof(buf), fmt, args);
va_end(args);
Serial.print(buf);
}
uint8_t g_ledstate = LEDState_Off;
uint32_t g_ledtimestart;
bool g_fade;
bool g_lockopen;
bool g_spacestate = SPACEState_Closed;
#define LED_PERIOD 1024
void ProcessLEDs()
{
if (g_ledstate == LEDState_Off)
{
analogWrite(PIN_LEDGREEN, 0);
analogWrite(PIN_LEDRED, 0);
}
else if (g_ledstate == LEDState_Reading)
{
uint32_t timesincesetting = millis() + LED_PERIOD / 2 - g_ledtimestart;
uint32_t ledtime = timesincesetting % LED_PERIOD;
uint32_t ledval;
if (ledtime < LED_PERIOD / 2)
ledval = ledtime;
else
ledval = (LED_PERIOD - 1) - ledtime;
ledval = (ledval * ledval) / LED_PERIOD;
if (!HasMainsPower())
ledval = (ledval + 5) / 10;
if (g_lockopen)
{
analogWrite(PIN_LEDGREEN, ledval);
analogWrite(PIN_LEDRED, 0);
}
else
{
analogWrite(PIN_LEDGREEN, 0);
analogWrite(PIN_LEDRED, ledval);
}
}
else if (g_ledstate == LEDState_Authorized)
{
if (g_lockopen)
{
analogWrite(PIN_LEDGREEN, 255);
analogWrite(PIN_LEDRED, 0);
}
else
{
analogWrite(PIN_LEDGREEN, 0);
analogWrite(PIN_LEDRED, 255);
}
}
else if (g_ledstate == LEDState_Busy)
{
analogWrite(PIN_LEDGREEN, 255);
analogWrite(PIN_LEDRED, 255);
}
}
void SetLEDState(uint8_t ledstate)
{
if (ledstate == LEDState_Reading && g_ledstate != LEDState_Reading)
{
g_ledtimestart = millis();
g_fade = true;
}
g_ledstate = ledstate;
ProcessLEDs();
}
void DelayLEDs(uint32_t delayms)
{
uint32_t now = millis();
while (millis() - now < delayms)
ProcessLEDs();
}
void setup()
{
Serial.begin(115200);
Serial.println("DEBUG: Board started");
Wire.begin();
stepper.begin(RPM);
stepper.enable();
stepper.setMicrostep(1); // Set microstep mode to 1:1
pinMode(INPUT_SOLENOID, INPUT_PULLUP);
pinMode(INPUT_HORN, INPUT_PULLUP);
pinMode(PIN_LEDSOLENOID, OUTPUT);
pinMode(PIN_LEDHORN, OUTPUT);
pinMode(PIN_DOORPOWER, OUTPUT);
pinMode(PIN_SOLENOID, OUTPUT);
pinMode(PIN_OPEN, OUTPUT);
pinMode(PIN_CLOSE, OUTPUT);
pinMode(PIN_HORN, OUTPUT);
pinMode(PIN_LEDGREEN, OUTPUT);
pinMode(PIN_LEDRED, OUTPUT);
pinMode(PIN_MAINS_POWER, INPUT);
digitalWrite(PIN_OPEN, LOW);
digitalWrite(PIN_CLOSE, LOW);
digitalWrite(PIN_DOORPOWER, LOW);
digitalWrite(PIN_HORN, LOW);
digitalWrite(PIN_SOLENOID, LOW);
SetLEDState(LEDState_Off);
Entropy.initialize();
}
void writeEEPROM(unsigned int eeaddress, byte data )
{
Wire.beginTransmission(EEPROMDEVICEADDRESS);
Wire.write((int)(eeaddress >> 8)); // MSB
Wire.write((int)(eeaddress & 0xFF)); // LSB
Wire.write(data);
Wire.endTransmission();
delay(5);
}
byte readEEPROM(unsigned int eeaddress )
{
byte rdata = 0xFF;
Wire.beginTransmission(EEPROMDEVICEADDRESS);
Wire.write((int)(eeaddress >> 8)); // MSB
Wire.write((int)(eeaddress & 0xFF)); // LSB
Wire.endTransmission();
Wire.requestFrom(EEPROMDEVICEADDRESS,1);
if (Wire.available()) rdata = Wire.read();
return rdata;
}
void AddButton(uint8_t* addr, uint8_t* secret)
{
for (uint16_t i = 0; i < EEPROMSIZE / STORAGESIZE; i++)
{
bool emptyslot = true;
uint16_t startaddr = i * STORAGESIZE;
for (uint16_t j = 0; j < ADDRSIZE; j++)
{
uint8_t eeprombyte = readEEPROM(startaddr + j);
if (eeprombyte != 0xFF && eeprombyte != addr[j])
{
emptyslot = false;
break;
}
}
if (emptyslot)
{
for (uint16_t j = 0; j < ADDRSIZE; j++)
writeEEPROM(startaddr + j, addr[j]);
for (uint16_t j = 0; j < SECRETSIZE; j++)
writeEEPROM(startaddr + j + ADDRSIZE, secret[j]);
Serialprintf("DEBUG: stored button in slot %i\n", i);
return;
}
}
Serial.println("ERROR: no room in eeprom to store button");
}
void RemoveButton(uint8_t* addr)
{
for (uint16_t i = 0; i < EEPROMSIZE / STORAGESIZE; i++)
{
uint16_t startaddr = i * STORAGESIZE;
bool sameaddr = true;
for (uint16_t j = 0; j < ADDRSIZE; j++)
{
uint8_t eeprombyte = readEEPROM(startaddr + j);
if (eeprombyte != addr[j])
{
sameaddr = false;
break;
}
}
if (!sameaddr)
continue;
Serialprintf("DEBUG: erasing slot %i\n", i);
for (uint16_t j = 0; j < STORAGESIZE; j++)
writeEEPROM(startaddr + j, 0xFF);
}
}
bool GetButtonSecret(uint8_t* addr, uint8_t* secret)
{
for (uint16_t i = 0; i < EEPROMSIZE / STORAGESIZE; i++)
{
uint16_t startaddr = i * STORAGESIZE;
bool sameaddr = true;
bool isempty = true;
for (uint16_t j = 0; j < ADDRSIZE; j++)
{
uint8_t eeprombyte = readEEPROM(startaddr + j);
if (isempty && eeprombyte != 0xFF)
isempty = false;
if (eeprombyte != addr[j])
{
sameaddr = false;
break;
}
}
if (isempty)
continue;
if (sameaddr)
{
Serialprintf("DEBUG: getting secret from slot %i\n", i);
for (uint16_t j = 0; j < SECRETSIZE; j++)
secret[j] = readEEPROM(startaddr + j + ADDRSIZE);
return true;
}
}
Serial.println("DEBUG: can't find secret for button");
return false;
}
void ListButtons()
{
Serial.println("button list start");
for (uint16_t i = 0; i < EEPROMSIZE / STORAGESIZE; i++)
{
uint16_t startaddr = i * STORAGESIZE;
uint8_t buttonid[ADDRSIZE];
bool isempty = true;
for (uint16_t j = 0; j < ADDRSIZE; j++)
{
uint8_t eeprombyte = readEEPROM(startaddr + j);
if (isempty && eeprombyte != 0xFF)
isempty = false;
buttonid[j] = eeprombyte;
}
if (isempty)
continue;
Serialprintf("button: ");
for (uint16_t j = 0; j < ADDRSIZE; j++)
Serialprintf("%02x", buttonid[j]);
Serialprintf("\n");
}
}
#define RANDOMDELAY_MIN 50
#define RANDOMDELAY_MAX 200
bool AuthenticateButton(uint8_t* addr)
{
uint8_t secret[SECRETSIZE];
if (!GetButtonSecret(addr, secret))
return false;
uint8_t mac_from_ibutton[SHA1SIZE];
uint8_t data[32];
uint8_t nonce[3];
for (uint8_t i = 0; i < sizeof(nonce); i++)
nonce[i] = Entropy.randomByte();
if (!ibutton.ReadAuthWithChallenge(addr, 0, nonce, data, mac_from_ibutton))
return false;
sha1::sha1nfo sha1data = {};
sha1::sha1_init(&sha1data);
sha1::sha1_write(&sha1data, (const char*)secret, 4);
sha1::sha1_write(&sha1data, (const char*)data, sizeof(data));
sha1::sha1_writebyte(&sha1data, 0xff);
sha1::sha1_writebyte(&sha1data, 0xff);
sha1::sha1_writebyte(&sha1data, 0xff);
sha1::sha1_writebyte(&sha1data, 0xff);
sha1::sha1_writebyte(&sha1data, 0x40);
sha1::sha1_write(&sha1data, (const char*)addr, ADDRSIZE - 1);
sha1::sha1_write(&sha1data, (const char*)secret + 4, 4);
sha1::sha1_write(&sha1data, (const char*)nonce, sizeof(nonce));
uint8_t* sha_computed = sha1::sha1_result(&sha1data);
uint8_t mac_computed[SHA1SIZE];
((uint32_t*)mac_computed)[0] = htonl(ntohl(*(uint32_t *)sha_computed) - 0x67452301);
((uint32_t*)mac_computed)[1] = htonl(ntohl(*(uint32_t *)(sha_computed+4)) - 0xefcdab89);
((uint32_t*)mac_computed)[2] = htonl(ntohl(*(uint32_t *)(sha_computed+8)) - 0x98badcfe);
((uint32_t*)mac_computed)[3] = htonl(ntohl(*(uint32_t *)(sha_computed+12)) - 0x10325476);
((uint32_t*)mac_computed)[4] = htonl(ntohl(*(uint32_t *)(sha_computed+16)) - 0xc3d2e1f0);
//this check should always take the same amount of time, to prevent a timing attack
bool macvalid = true;
for (uint8_t i = 0; i < SHA1SIZE; i++)
{
if (mac_from_ibutton[i] != mac_computed[SHA1SIZE - 1 - i])
macvalid = false;
}
//add a random delay
delayMicroseconds(Entropy.random(RANDOMDELAY_MIN, RANDOMDELAY_MAX));
return macvalid;
}
bool ReadCMD(char* cmdbuf, uint8_t* cmdbuffill)
{
uint32_t cmdstarttime = millis();
*cmdbuffill = 0;
for(;;)
{
if (Serial.available())
{
char input = Serial.read();
if (input == '\n')
{
cmdbuf[*cmdbuffill] = 0;
return true;
}
else if (*cmdbuffill < CMD_BUFSIZE - 1)
{
cmdbuf[*cmdbuffill] = input;
(*cmdbuffill)++;
}
}
if (millis() - cmdstarttime >= CMD_TIMEOUT)
{
Serial.println("ERROR: timeout receiving command");
return false;
}
}
}
uint8_t NextWordPos(char* cmdbuf, uint8_t cmdbuffill, uint8_t index)
{
bool foundwhitespace = false;
for (uint8_t i = index; i < cmdbuffill; i++)
{
if (!foundwhitespace)
{
if (cmdbuf[i] == ' ')
foundwhitespace = true;
}
else
{
if (cmdbuf[i] != ' ')
{
return i;
}
}
}
return 0;
}
bool GetHexWordFromCMD(char* cmdbuf, uint8_t cmdbuffill, uint8_t* wordpos, uint8_t* wordbuf, uint8_t wordsize, char* wordname)
{
*wordpos = NextWordPos(cmdbuf, cmdbuffill, *wordpos);
if (*wordpos == 0)
{
Serialprintf("ERROR: no %s found in command\n", wordname);
return false;
}
else if (cmdbuffill - *wordpos < wordsize * 2)
{
Serialprintf("ERROR: %s is too short\n", wordname);
return false;
}
for (uint8_t i = 0; i < wordsize; i++)
{
if ((cmdbuf[*wordpos + i * 2] == ' ') || (cmdbuf[*wordpos + i * 2 + 1] == ' '))
{
Serialprintf("ERROR: %s is too short\n", wordname);
return false;
}
int numread = sscanf(cmdbuf + *wordpos + i * 2, "%2hhx", wordbuf + i);
if (numread != 1)
{
Serialprintf("ERROR: %s is invalid\n", wordname);
return false;
}
}
return true;
}
#define CMD_ADD_BUTTON "add_button"
#define CMD_REMOVE_BUTTON "remove_button"
#define CMD_LIST_BUTTONS "list_buttons"
#define CMD_SPACESTATE "spacestate"
void ParseCMD(char* cmdbuf, uint8_t cmdbuffill)
{
Serial.print("DEBUG: Received cmd: ");
Serial.println(cmdbuf);
bool isadd = strncmp(CMD_ADD_BUTTON, cmdbuf, strlen(CMD_ADD_BUTTON)) == 0;
bool isremove = strncmp(CMD_REMOVE_BUTTON, cmdbuf, strlen(CMD_REMOVE_BUTTON)) == 0;
bool islist = strncmp(CMD_LIST_BUTTONS, cmdbuf, strlen(CMD_LIST_BUTTONS)) == 0;
bool isspacestate = strncmp(CMD_SPACESTATE, cmdbuf, strlen(CMD_SPACESTATE)) == 0;
if (isadd || isremove)
{
uint8_t wordpos = 0;
uint8_t addr[ADDRSIZE];
if (!GetHexWordFromCMD(cmdbuf, cmdbuffill, &wordpos, addr, ADDRSIZE, "address"))
return;
Serial.print("DEBUG: Received address ");
for (uint8_t i = 0; i < ADDRSIZE; i++)
Serialprintf("%02x", addr[i]);
Serial.print("\n");
bool addrvalid = false;
for (uint8_t i = 0; i < ADDRSIZE; i++)
{
if (addr[i] != 0xFF)
{
addrvalid = true;
break;
}
}
if (!addrvalid)
{
Serial.println("ERROR: address FFFFFFFFFFFFFFFF is invalid");
return;
}
if (isadd)
{
uint8_t secret[SECRETSIZE];
if (!GetHexWordFromCMD(cmdbuf, cmdbuffill, &wordpos, secret, SECRETSIZE, "secret"))
return;
Serial.print("DEBUG: Received secret ");
for (uint8_t i = 0; i < ADDRSIZE; i++)
Serialprintf("%02x", secret[i]);
Serial.print("\n");
AddButton(addr, secret);
}
else
{
Serialprintf("DEBUG: removing button\n");
RemoveButton(addr);
}
}
else if (islist)
{
ListButtons();
}
else if (isspacestate)
{
uint8_t wordpos = 0;
wordpos = NextWordPos(cmdbuf, cmdbuffill, wordpos);
bool isopen = strncmp("open", &cmdbuf[wordpos], strlen("open")) == 0;
bool isclosed = strncmp("closed", &cmdbuf[wordpos], strlen("closed")) == 0;
if(isopen || isclosed){
Serial.print("Old state: ");
Serial.println(g_spacestate == SPACEState_Open ? "open" : "closed");
g_spacestate = isopen ? SPACEState_Open : SPACEState_Closed;
}
Serial.print("Current state: ");
Serial.println(g_spacestate == SPACEState_Open ? "open" : "closed");
}
else
{
Serial.println("Unknown command");
}
}
#define TOGGLE_TIME 2500
#define BUTTON_TIME 250
void ToggleLock()
{
if (g_lockopen)
{
g_lockopen = false;
Serial.println("closing lock");
digitalWrite(PIN_DOORPOWER, HIGH);
digitalWrite(PIN_CLOSE, HIGH);
DelayLEDs(BUTTON_TIME);
DelayLEDs(TOGGLE_TIME - BUTTON_TIME);
}
else
{
g_lockopen = true;
Serial.println("opening lock");
digitalWrite(PIN_DOORPOWER, HIGH);
digitalWrite(PIN_OPEN, HIGH);
DelayLEDs(BUTTON_TIME);
DelayLEDs(TOGGLE_TIME - BUTTON_TIME);
}
DelayLEDs(4000);
digitalWrite(PIN_OPEN, LOW);
digitalWrite(PIN_CLOSE, LOW);
digitalWrite(PIN_DOORPOWER, LOW);
Serial.println("finished lock action");
}
bool HasMainsPower()
{
return digitalRead(PIN_MAINS_POWER) == HIGH;
}
void loop()
{
uint8_t addr[ADDRSIZE];
uint32_t deniedcount = 0;
for(;;)
{
if (Serial.available())
{
uint8_t input = Serial.read();
if (input == '\n')
{
SetLEDState(LEDState_Busy);
Serial.println("ready");
char cmdbuf[CMD_BUFSIZE] = {};
uint8_t cmdbuffill;
if (ReadCMD(cmdbuf, &cmdbuffill))
ParseCMD(cmdbuf, cmdbuffill);
}
}
SetLEDState(LEDState_Reading);
ds.reset_search();
if (ds.search(addr) && OneWire::crc8(addr, 7) == addr[7])
{
Serial.print("DEBUG: Found iButton with address: ");
for (uint8_t i = 0; i < sizeof(addr); i++)
Serialprintf("%02x", addr[i]);
Serial.print('\n');
if (AuthenticateButton(addr))
{
SetLEDState(LEDState_Authorized);
Serial.print("iButton authenticated\n");
g_lockopen = true;
// DelayLEDs(5000);
// ToggleLock();
deniedcount = 0;
// if(g_lockopen == true){
StateSolenoid = true;
SolenoidStartTime = millis();
Serial.print("Solenoid activated\n");
digitalWrite(PIN_SOLENOID, HIGH);
// stepper.move(MOTOR_STEPS*(RPM/60)*10);
// }
}
else
{
deniedcount++;
if (deniedcount == 3)
{
Serial.print("iButton not authenticated\n");
SetLEDState(LEDState_Busy);
//disabled because sounding the horn resets the arduino
//digitalWrite(PIN_HORN, HIGH);
//DelayLEDs(500);
//digitalWrite(PIN_HORN, LOW);
deniedcount = 0;
}
}
}
else
{
deniedcount = 0;
}
ProcessLEDs();
if(g_spacestate == SPACEState_Open){
digitalWrite(PIN_LEDSOLENOID, HIGH);
}else{
digitalWrite(PIN_LEDSOLENOID, LOW);
}
digitalWrite(PIN_LEDHORN, HIGH);
if (digitalRead(INPUT_SOLENOID) == LOW) {
if(g_spacestate == SPACEState_Open){
if(StateSolenoid == false){
StateSolenoid = true;
SolenoidStartTime = millis();
Serial.print("Solenoid activated\n");
digitalWrite(PIN_SOLENOID, HIGH);
g_lockopen = true;
// stepper.move(MOTOR_STEPS*(RPM/60)*10);
}
}else{
if(StateSolenoidInactive == false){
StateSolenoidInactive = true;
SolenoidInactiveStartTime = millis();
Serial.print("Spacestate closed, Solenoid button not active\n");
}
}
}
if(StateSolenoid == true && ((millis() - SolenoidStartTime) > (5*1000)) ){
digitalWrite(PIN_SOLENOID, LOW);
StateSolenoid = false;
g_lockopen = false;
}
if(StateSolenoidInactive == true && ((millis() - SolenoidInactiveStartTime) > (1*1000)) ){
StateSolenoidInactive = false;
}
if (digitalRead(INPUT_HORN) == LOW) {
if(StateHorn == false){
StateHorn = true;
Serial.print("Horn activated\n");
digitalWrite(PIN_HORN, HIGH);
}
}else{
StateHorn = false;
digitalWrite(PIN_HORN, LOW);
}
}
}

View file

@ -0,0 +1,156 @@
#include "sha1.h"
#include <string.h>
namespace sha1
{
/* code */
#define SHA1_K0 0x5a827999
#define SHA1_K20 0x6ed9eba1
#define SHA1_K40 0x8f1bbcdc
#define SHA1_K60 0xca62c1d6
void sha1_init(sha1nfo *s) {
s->state[0] = 0x67452301;
s->state[1] = 0xefcdab89;
s->state[2] = 0x98badcfe;
s->state[3] = 0x10325476;
s->state[4] = 0xc3d2e1f0;
s->byteCount = 0;
s->bufferOffset = 0;
}
uint32_t sha1_rol32(uint32_t number, uint8_t bits) {
return ((number << bits) | (number >> (32-bits)));
}
void sha1_hashBlock(sha1nfo *s) {
uint8_t i;
uint32_t a,b,c,d,e,t;
a=s->state[0];
b=s->state[1];
c=s->state[2];
d=s->state[3];
e=s->state[4];
for (i=0; i<80; i++) {
if (i>=16) {
t = s->buffer[(i+13)&15] ^ s->buffer[(i+8)&15] ^ s->buffer[(i+2)&15] ^ s->buffer[i&15];
s->buffer[i&15] = sha1_rol32(t,1);
}
if (i<20) {
t = (d ^ (b & (c ^ d))) + SHA1_K0;
} else if (i<40) {
t = (b ^ c ^ d) + SHA1_K20;
} else if (i<60) {
t = ((b & c) | (d & (b | c))) + SHA1_K40;
} else {
t = (b ^ c ^ d) + SHA1_K60;
}
t+=sha1_rol32(a,5) + e + s->buffer[i&15];
e=d;
d=c;
c=sha1_rol32(b,30);
b=a;
a=t;
}
s->state[0] += a;
s->state[1] += b;
s->state[2] += c;
s->state[3] += d;
s->state[4] += e;
}
void sha1_addUncounted(sha1nfo *s, uint8_t data) {
uint8_t * const b = (uint8_t*) s->buffer;
#ifdef SHA_BIG_ENDIAN
b[s->bufferOffset] = data;
#else
b[s->bufferOffset ^ 3] = data;
#endif
s->bufferOffset++;
if (s->bufferOffset == BLOCK_LENGTH) {
sha1_hashBlock(s);
s->bufferOffset = 0;
}
}
void sha1_writebyte(sha1nfo *s, uint8_t data) {
++s->byteCount;
sha1_addUncounted(s, data);
}
void sha1_write(sha1nfo *s, const char *data, size_t len) {
for (;len--;) sha1_writebyte(s, (uint8_t) *data++);
}
void sha1_pad(sha1nfo *s) {
// Implement SHA-1 padding (fips180-2 §5.1.1)
// Pad with 0x80 followed by 0x00 until the end of the block
sha1_addUncounted(s, 0x80);
while (s->bufferOffset != 56) sha1_addUncounted(s, 0x00);
// Append length in the last 8 bytes
sha1_addUncounted(s, 0); // We're only using 32 bit lengths
sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths
sha1_addUncounted(s, 0); // So zero pad the top bits
sha1_addUncounted(s, s->byteCount >> 29); // Shifting to multiply by 8
sha1_addUncounted(s, s->byteCount >> 21); // as SHA-1 supports bitstreams as well as
sha1_addUncounted(s, s->byteCount >> 13); // byte.
sha1_addUncounted(s, s->byteCount >> 5);
sha1_addUncounted(s, s->byteCount << 3);
}
uint8_t* sha1_result(sha1nfo *s) {
// Pad to complete the last block
sha1_pad(s);
#ifndef SHA_BIG_ENDIAN
// Swap byte order back
int i;
for (i=0; i<5; i++) {
s->state[i]=
(((s->state[i])<<24)& 0xff000000)
| (((s->state[i])<<8) & 0x00ff0000)
| (((s->state[i])>>8) & 0x0000ff00)
| (((s->state[i])>>24)& 0x000000ff);
}
#endif
// Return pointer to hash (20 characters)
return (uint8_t*) s->state;
}
#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5c
void sha1_initHmac(sha1nfo *s, const uint8_t* key, int keyLength) {
uint8_t i;
memset(s->keyBuffer, 0, BLOCK_LENGTH);
if (keyLength > BLOCK_LENGTH) {
// Hash long keys
sha1_init(s);
for (;keyLength--;) sha1_writebyte(s, *key++);
memcpy(s->keyBuffer, sha1_result(s), HASH_LENGTH);
} else {
// Block length keys are used as is
memcpy(s->keyBuffer, key, keyLength);
}
// Start inner hash
sha1_init(s);
for (i=0; i<BLOCK_LENGTH; i++) {
sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_IPAD);
}
}
uint8_t* sha1_resultHmac(sha1nfo *s) {
uint8_t i;
// Complete inner hash
memcpy(s->innerHash,sha1_result(s),HASH_LENGTH);
// Calculate outer hash
sha1_init(s);
for (i=0; i<BLOCK_LENGTH; i++) sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_OPAD);
for (i=0; i<HASH_LENGTH; i++) sha1_writebyte(s, s->innerHash[i]);
return sha1_result(s);
}
}

View file

@ -0,0 +1,69 @@
#ifndef SHA1_H
#define SHA1_H
#include <stdint.h>
#include <stddef.h>
#define __LITTLE_ENDIAN__
//#define __BIG_ENDIAN__
namespace sha1
{
/* This code is public-domain - it is based on libcrypt
* placed in the public domain by Wei Dai and other contributors.
*/
// gcc -Wall -DSHA1TEST -o sha1test sha1.c && ./sha1test
#ifdef __BIG_ENDIAN__
# define SHA_BIG_ENDIAN
#elif defined __LITTLE_ENDIAN__
/* override */
#elif defined __BYTE_ORDER
# if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
# define SHA_BIG_ENDIAN
# endif
#else // ! defined __LITTLE_ENDIAN__
# include <machine/endian.h> // machine/endian.h
# if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
# define SHA_BIG_ENDIAN
# endif
#endif
/* header */
#define HASH_LENGTH 20
#define BLOCK_LENGTH 64
typedef struct sha1nfo {
uint32_t buffer[BLOCK_LENGTH/4];
uint32_t state[HASH_LENGTH/4];
uint32_t byteCount;
uint8_t bufferOffset;
uint8_t keyBuffer[BLOCK_LENGTH];
uint8_t innerHash[HASH_LENGTH];
} sha1nfo;
/* public API - prototypes - TODO: doxygen*/
/**
*/
void sha1_init(sha1nfo *s);
/**
*/
void sha1_writebyte(sha1nfo *s, uint8_t data);
/**
*/
void sha1_write(sha1nfo *s, const char *data, size_t len);
/**
*/
uint8_t* sha1_result(sha1nfo *s);
/**
*/
void sha1_initHmac(sha1nfo *s, const uint8_t* key, int keyLength);
/**
*/
uint8_t* sha1_resultHmac(sha1nfo *s);
}
#endif //SHA1_H

View file

@ -0,0 +1,11 @@
This directory is intended for PlatformIO Unit Testing and project tests.
Unit Testing is a software testing method by which individual units of
source code, sets of one or more MCU program modules together with associated
control data, usage procedures, and operating procedures, are tested to
determine whether they are fit for use. Unit testing finds problems early
in the development cycle.
More information about PlatformIO Unit Testing:
- https://docs.platformio.org/page/plus/unit-testing.html

View file

@ -4,7 +4,7 @@ import serial
import sys
import time
SERIAL_PORTS = [ '/dev/ttyS1', '/dev/ttyS2' ]
SERIAL_PORTS = [ '/dev/ttyS2' ]
def open_port(tty):
@ -56,7 +56,7 @@ def remove_button(ports, button):
break
print(line)
def add_button(ser, button, secret):
def add_button(ports, button, secret):
for port in ports:
with open_port(port) as ser:
ser.write(b'\r\n')

2
pi-config/.gitignore vendored Normal file
View file

@ -0,0 +1,2 @@
toegang
config/settings

View file

@ -0,0 +1,13 @@
[mqtt]
doorbell.subject=bitlair/doorduino/doorbell
dooropen.subject=bitlair/doorduino/dooropen
lockstate.subject=bitlair/doorduino/lockstate
server=mqtt.bitlair.nl
mqtt-simple=/usr/local/bin/mqtt-simple
client-id=doorpi
state-bitlair.subject=bitlair/state
state-djo.subject=bitlair/state/djo
[serial]
device=/dev/ttyS2

111
pi-config/doorduino-init Executable file
View file

@ -0,0 +1,111 @@
#!/bin/sh
### BEGIN INIT INFO
# Provides: generic-prog
# Required-Start: $local_fs $remote_fs $network
# Required-Stop: $local_fs $remote_fs $network
# Default-Start: 2 3 4 5
# Default-Stop: 0 1 6
# Short-Description: Generic Program
# Description: Generic Program is a generic program to do generic things with
### END INIT INFO
# Documentation available at
# http://refspecs.linuxfoundation.org/LSB_3.1.0/LSB-Core-generic/LSB-Core-generic/iniscrptfunc.html
# Debian provides some extra functions though
. /lib/lsb/init-functions
DAEMON_NAME="root"
DAEMON_USER="root"
DAEMON_PATH="/root/bitlair_doorduino/pi-config/doorduino.py"
DAEMON_OPTS="-c /root/bitlair_doorduino/pi-config/config"
DAEMON_PWD="${PWD}"
DAEMON_DESC=$(get_lsb_header_val $0 "Short-Description")
DAEMON_PID="/var/run/${DAEMON_NAME}.pid"
DAEMON_NICE=0
DAEMON_LOG='/var/log/doorduino'
[ -r "/etc/default/${DAEMON_NAME}" ] && . "/etc/default/${DAEMON_NAME}"
do_start() {
local result
pidofproc -p "${DAEMON_PID}" "${DAEMON_PATH}" > /dev/null
if [ $? -eq 0 ]; then
log_warning_msg "${DAEMON_NAME} is already started"
result=0
else
log_daemon_msg "Starting ${DAEMON_DESC}" "${DAEMON_NAME}"
touch "${DAEMON_LOG}"
chown $DAEMON_USER "${DAEMON_LOG}"
chmod u+rw "${DAEMON_LOG}"
if [ -z "${DAEMON_USER}" ]; then
start-stop-daemon --start --quiet --oknodo --background \
--nicelevel $DAEMON_NICE \
--chdir "${DAEMON_PWD}" \
--pidfile "${DAEMON_PID}" --make-pidfile \
--exec "${DAEMON_PATH}" -- $DAEMON_OPTS
result=$?
else
start-stop-daemon --start --quiet --oknodo --background \
--nicelevel $DAEMON_NICE \
--chdir "${DAEMON_PWD}" \
--pidfile "${DAEMON_PID}" --make-pidfile \
--chuid "${DAEMON_USER}" \
--exec "${DAEMON_PATH}" -- $DAEMON_OPTS
result=$?
fi
log_end_msg $result
fi
return $result
}
do_stop() {
local result
pidofproc -p "${DAEMON_PID}" "${DAEMON_PATH}" > /dev/null
if [ $? -ne 0 ]; then
log_warning_msg "${DAEMON_NAME} is not started"
result=0
else
log_daemon_msg "Stopping ${DAEMON_DESC}" "${DAEMON_NAME}"
killproc -p "${DAEMON_PID}" "${DAEMON_PATH}"
result=$?
log_end_msg $result
rm "${DAEMON_PID}"
fi
return $result
}
do_restart() {
local result
do_stop
result=$?
if [ $result = 0 ]; then
do_start
result=$?
fi
return $result
}
do_status() {
local result
status_of_proc -p "${DAEMON_PID}" "${DAEMON_PATH}" "${DAEMON_NAME}"
result=$?
return $result
}
do_usage() {
echo $"Usage: $0 {start | stop | restart | status}"
exit 1
}
case "$1" in
start) do_start; exit $? ;;
stop) do_stop; exit $? ;;
restart) do_restart; exit $? ;;
status) do_status; exit $? ;;
*) do_usage; exit 1 ;;
esac

320
pi-config/doorduino.py Executable file
View file

@ -0,0 +1,320 @@
#!/usr/bin/python3
from serial.tools import list_ports
import serial
import io
import time
import subprocess
import csv
import getopt
import sys
import os
import math
import paramiko
from pathlib import Path
import configparser
import re
import threading
import syslog
import csv
import git
import logging
from paho.mqtt import client as mqtt_client
def connect_mqtt(config, broker, port, client_id):
# def on_connect(client, userdata, flags, rc):
# For paho-mqtt 2.0.0, you need to add the properties parameter.
def on_connect(client, userdata, flags, rc, properties):
if rc == 0:
print("Connected to MQTT Broker!")
subscribe(client, config.get('mqtt', 'state-bitlair.subject'))
subscribe(client, config.get('mqtt', 'state-djo.subject'))
else:
print("Failed to connect, return code %d\n", rc)
# Set Connecting Client ID
# For paho-mqtt 2.0.0, you need to set callback_api_version.
client = mqtt_client.Client(client_id=client_id, callback_api_version=mqtt_client.CallbackAPIVersion.VERSION2)
# client.username_pw_set(username, password)
client.on_connect = on_connect
client.connect(broker, port)
return client
FIRST_RECONNECT_DELAY = 1
RECONNECT_RATE = 2
MAX_RECONNECT_COUNT = 12
MAX_RECONNECT_DELAY = 60
def on_disconnect(client, userdata, rc):
logging.info("Disconnected with result code: %s", rc)
reconnect_count, reconnect_delay = 0, FIRST_RECONNECT_DELAY
while reconnect_count < MAX_RECONNECT_COUNT:
logging.info("Reconnecting in %d seconds...", reconnect_delay)
time.sleep(reconnect_delay)
try:
client.reconnect()
logging.info("Reconnected successfully!")
return
except Exception as err:
logging.error("%s. Reconnect failed. Retrying...", err)
reconnect_delay *= RECONNECT_RATE
reconnect_delay = min(reconnect_delay, MAX_RECONNECT_DELAY)
reconnect_count += 1
logging.info("Reconnect failed after %s attempts. Exiting...", reconnect_count)
states = {}
def update_spacestate():
global ser
open = False
for key in states:
if states[key] == "open":
open = True
try:
if open:
print("Send spacestate open")
ser.write(b"\n")
ser.write(b"spacestate open\n");
else:
print("Send spacestate closed")
ser.write(b"\n")
ser.write(b"spacestate closed\n")
except serial.SerialException:
print("Serial connection error")
time.sleep(2)
def subscribe(client: mqtt_client, topic):
def on_message(client, userdata, msg):
states[msg.topic] = msg.payload.decode()
print(f"Received `{msg.payload.decode()}` from `{msg.topic}` topic")
update_spacestate()
client.subscribe(topic)
client.on_message = on_message
def read_configuration(configdir):
if (configdir == ''):
print("Missing configdir.")
sys.exit(2)
if not os.path.exists(configdir):
print("Directory ", configdir, " does not exist");
sys.exit(2)
configfile = Path(os.path.join(configdir, 'settings'))
if not configfile.is_file():
print(configfile, " does not exist")
sys.exit(2)
config = configparser.ConfigParser()
config.read_file(configfile.open())
expected_config_options = { 'mqtt': [ 'doorbell.subject', 'dooropen.subject', 'lockstate.subject', 'server', 'mqtt-simple' ],
'serial': [ 'device' ] }
for section, options in expected_config_options.items():
for option in options:
if not config.has_option(section, option):
print("Missing config option ", option, "in section", section)
sys.exit(2)
return config
def mqtt_send_thread(config, subject, value, persistent):
if persistent:
subprocess.call([config.get('mqtt', 'mqtt-simple'), "-h", config.get('mqtt', 'server'), "-r", "-p", subject, "-m", value])
else:
subprocess.call([config.get('mqtt', 'mqtt-simple'), "-h", config.get('mqtt', 'server'), "-p", subject, "-m", value])
def mqtt(config, subject, value, persistent=False):
threading.Thread(target = mqtt_send_thread, args = (config, subject, value, persistent)).start()
def log(message):
print("LOG " + message)
syslog.syslog(message)
def mqtt_thread():
global client
global config
client = connect_mqtt(config, config.get('mqtt', 'server'), 1883, config.get('mqtt', 'client-id'))
client.loop_forever()
buttons = []
def serial_monitor_thread():
global ser
global config
global buttons
while True:
try:
ser = serial.Serial(config.get('serial', 'device'), 115200, rtscts=False, dsrdtr=True)
time.sleep(2);
print("Doorduino started");
while True:
data = ser.readline()
action = data.decode("iso-8859-1").strip()
print("Data:" + action)
if action == "Horn activated":
print("Horn activated")
log("Horn activated")
mqtt(config, config.get('mqtt','doorbell.subject'), '1', False)
time.sleep(2)
mqtt(config, config.get('mqtt','doorbell.subject'), '0', False)
elif action == "Solenoid activated":
print("Solenoid activated")
log("Solenoid activated")
mqtt(config, config.get('mqtt','dooropen.subject'), '1', False)
time.sleep(2)
mqtt(config, config.get('mqtt','dooropen.subject'), '0', False)
elif action == "iButton authenticated":
print("iButton authenticated")
log("iButton authenticated")
elif action == "opening lock":
print("lock open")
log("lock open")
mqtt(config, config.get('mqtt','lockstate.subject'), 'open', True)
elif action == "closing lock":
print("lock closed")
log("lock closed")
mqtt(config, config.get('mqtt','lockstate.subject'), 'closed', True)
elif action[:7] == "button:":
# print("got button ")
# print(action[8:])
if not action[8:] in buttons:
buttons.append(action[8:])
elif action == "DEBUG: Board started":
print("Arduino was reset, sending spacestate")
update_spacestate()
except serial.SerialException:
print("Serial connection error")
time.sleep(2)
except StopIteration:
print("No device found")
time.sleep(2)
def git_update(git_dir):
log("Updating git")
# subprocess.call(["git", "-C", git_dir, "pull"])
repo = git.Repo(git_dir)
# print('Remotes:')
# for remote in repo.remotes:
# print(f'- {remote.name} {remote.url}')
try:
pull = repo.remotes.origin.pull()
except git.exc.GitCommandError:
print("Git pull failed")
return False
# if pull[0].flags == 128:
# print("Git pull failed")
# return False
return True
def update_buttons():
global ser
global buttons
print("GIT init")
if(not git_update("toegang")):
print("Aborting GIT update thread")
return False
git_buttons = {}
with open('toegang/toegang.csv', newline='') as csvfile:
data = csvfile.read()
data = data.replace(' ', '')
reader = csv.DictReader(data.splitlines(), delimiter=',')
for row in reader:
ibutton = row['ibutton'].split(':')
git_buttons[ibutton[0].lower()] = ibutton[1].lower()
# print(row['naam'] + " " + row['ibutton'])
if len(git_buttons) < 25:
print("Something wrong, not enough buttons in git")
return
buttons = []
ser.write(b"\n")
ser.write(b"list_buttons\n");
time.sleep(10)
if len(buttons) < 5:
print("Something wrong, not enough buttons in doorduino")
return
print(buttons)
for button in git_buttons:
if button not in buttons:
print("should add " + button)
ser.write(b"\n")
ser.write(b"add_button "+button.encode('ascii')+b" "+git_buttons[button].encode('ascii')+b"\n")
time.sleep(2)
# else:
# print("already there " + button)
for button in buttons:
if button not in git_buttons:
print("should remove " + button)
ser.write(b"\n")
ser.write(b"remove_button "+button.encode('ascii')+b"\n")
time.sleep(2)
# else:
# print("should be there " + button)
print("Update buttons finished")
def git_thread():
print("Updating buttons")
update_buttons()
print("Update buttons finished, sleeping for 3600 seconds")
time.sleep(3600)
def threadwrap(threadfunc):
def wrapper():
while True:
try:
threadfunc()
except BaseException as e:
print('{!r}; restarting thread'.format(e))
else:
print('exited normally, bad thread; restarting')
return wrapper
def main(argv):
global config
configdir = ''
syslog.openlog('doorduino')
try:
opts, args = getopt.getopt(argv,"c:",["config="])
except getopt.GetoptError:
print('doorduino.py -c <configdir>')
sys.exit(2)
for opt, arg in opts:
if opt == "-c" or opt == "--config":
configdir = arg
config = read_configuration(configdir)
threading.Thread(target = threadwrap(serial_monitor_thread)).start()
time.sleep(5) # Give doorduino time to start before sending spacestate data
threading.Thread(target = threadwrap(mqtt_thread)).start()
threading.Thread(target = threadwrap(git_thread)).start()
if __name__ == "__main__":
main(sys.argv[1:])

View file

@ -0,0 +1,13 @@
[Unit]
Description=Doorduino
After=network.target
[Service]
Type=idle
Restart=on-failure
User=root
WorkingDirectory=/root/bitlair_doorduino/pi-config
ExecStart=/usr/bin/python3 -u doorduino.py -c config
[Install]
WantedBy=multi-user.target

View file

@ -0,0 +1,3 @@
paho-mqtt
paramiko
GitPython

8
pi-config/reset_arduino.sh Executable file
View file

@ -0,0 +1,8 @@
#!/bin/bash
cd /sys/class/gpio/
echo 6 > export
echo out > gpio6/direction
echo 0 > gpio6/value
echo 1 > gpio6/value
echo 6 > unexport

5
reset_eeprom/.gitignore vendored Normal file
View file

@ -0,0 +1,5 @@
.pio
.vscode/.browse.c_cpp.db*
.vscode/c_cpp_properties.json
.vscode/launch.json
.vscode/ipch

10
reset_eeprom/.vscode/extensions.json vendored Normal file
View file

@ -0,0 +1,10 @@
{
// See http://go.microsoft.com/fwlink/?LinkId=827846
// for the documentation about the extensions.json format
"recommendations": [
"platformio.platformio-ide"
],
"unwantedRecommendations": [
"ms-vscode.cpptools-extension-pack"
]
}

View file

@ -0,0 +1,39 @@
This directory is intended for project header files.
A header file is a file containing C declarations and macro definitions
to be shared between several project source files. You request the use of a
header file in your project source file (C, C++, etc) located in `src` folder
by including it, with the C preprocessing directive `#include'.
```src/main.c
#include "header.h"
int main (void)
{
...
}
```
Including a header file produces the same results as copying the header file
into each source file that needs it. Such copying would be time-consuming
and error-prone. With a header file, the related declarations appear
in only one place. If they need to be changed, they can be changed in one
place, and programs that include the header file will automatically use the
new version when next recompiled. The header file eliminates the labor of
finding and changing all the copies as well as the risk that a failure to
find one copy will result in inconsistencies within a program.
In C, the usual convention is to give header files names that end with `.h'.
It is most portable to use only letters, digits, dashes, and underscores in
header file names, and at most one dot.
Read more about using header files in official GCC documentation:
* Include Syntax
* Include Operation
* Once-Only Headers
* Computed Includes
https://gcc.gnu.org/onlinedocs/cpp/Header-Files.html

46
reset_eeprom/lib/README Normal file
View file

@ -0,0 +1,46 @@
This directory is intended for project specific (private) libraries.
PlatformIO will compile them to static libraries and link into executable file.
The source code of each library should be placed in a an own separate directory
("lib/your_library_name/[here are source files]").
For example, see a structure of the following two libraries `Foo` and `Bar`:
|--lib
| |
| |--Bar
| | |--docs
| | |--examples
| | |--src
| | |- Bar.c
| | |- Bar.h
| | |- library.json (optional, custom build options, etc) https://docs.platformio.org/page/librarymanager/config.html
| |
| |--Foo
| | |- Foo.c
| | |- Foo.h
| |
| |- README --> THIS FILE
|
|- platformio.ini
|--src
|- main.c
and a contents of `src/main.c`:
```
#include <Foo.h>
#include <Bar.h>
int main (void)
{
...
}
```
PlatformIO Library Dependency Finder will find automatically dependent
libraries scanning project source files.
More information about PlatformIO Library Dependency Finder
- https://docs.platformio.org/page/librarymanager/ldf.html

View file

@ -0,0 +1,18 @@
; PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[env:nanoatmega328]
platform = atmelavr
board = nanoatmega328new
framework = arduino
lib_deps =
monitor_speed = 115200

78
reset_eeprom/src/main.cpp Normal file
View file

@ -0,0 +1,78 @@
/*
* EEPROM Clear
*
* Sets all of the bytes of the EEPROM to 0.
* Please see eeprom_iteration for a more in depth
* look at how to traverse the EEPROM.
*
* This example code is in the public domain.
*/
#include "Arduino.h"
//#include <EEPROM.h>
#include "Wire.h"
#define EEPROMDEVICEADDRESS 0x50
#define EEPROMSIZE 2048
void writeEEPROM(unsigned int eeaddress, byte data )
{
Wire.beginTransmission(EEPROMDEVICEADDRESS);
Wire.write((int)(eeaddress >> 8)); // MSB
Wire.write((int)(eeaddress & 0xFF)); // LSB
Wire.write(data);
Wire.endTransmission();
delay(5);
}
byte readEEPROM(unsigned int eeaddress )
{
byte rdata = 0xFF;
Wire.beginTransmission(EEPROMDEVICEADDRESS);
Wire.write((int)(eeaddress >> 8)); // MSB
Wire.write((int)(eeaddress & 0xFF)); // LSB
Wire.endTransmission();
Wire.requestFrom(EEPROMDEVICEADDRESS,1);
if (Wire.available()) rdata = Wire.read();
return rdata;
}
void setup() {
// initialize the LED pin as an output.
pinMode(13, OUTPUT);
Serial.begin(115200);
/***
Iterate through each byte of the EEPROM storage.
Larger AVR processors have larger EEPROM sizes, E.g:
- Arduino Duemilanove: 512 B EEPROM storage.
- Arduino Uno: 1 kB EEPROM storage.
- Arduino Mega: 4 kB EEPROM storage.
Rather than hard-coding the length, you should use the pre-provided length function.
This will make your code portable to all AVR processors.
***/
delay(1000);
Serial.println("BEGIN");
for (int i = 0 ; i < EEPROMSIZE ; i++) {
// writeEEPROM(i, 0xFF);
Serial.print(readEEPROM(i),HEX);
}
// turn the LED on when we're done
digitalWrite(13, HIGH);
Serial.println("");
Serial.println("END");
}
void loop() {
/** Empty loop. **/
}

11
reset_eeprom/test/README Normal file
View file

@ -0,0 +1,11 @@
This directory is intended for PlatformIO Unit Testing and project tests.
Unit Testing is a software testing method by which individual units of
source code, sets of one or more MCU program modules together with associated
control data, usage procedures, and operating procedures, are tested to
determine whether they are fit for use. Unit testing finds problems early
in the development cycle.
More information about PlatformIO Unit Testing:
- https://docs.platformio.org/page/plus/unit-testing.html