mirror of
https://github.com/bitlair/bitlair_doorduino.git
synced 2025-05-13 20:20:08 +02:00
344 lines
12 KiB
C++
344 lines
12 KiB
C++
// Entropy - A entropy (random number) generator for the Arduino
|
|
// The latest version of this library will always be stored in the following
|
|
// google code repository:
|
|
// http://code.google.com/p/avr-hardware-random-number-generation/source/browse/#git%2FEntropy
|
|
// with more information available on the libraries wiki page
|
|
// http://code.google.com/p/avr-hardware-random-number-generation/wiki/WikiAVRentropy
|
|
//
|
|
// Copyright 2014 by Walter Anderson
|
|
//
|
|
// This file is part of Entropy, an Arduino library.
|
|
// Entropy is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// Entropy is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with Entropy. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include <Arduino.h>
|
|
#include "Entropy.h"
|
|
|
|
const uint8_t WDT_MAX_8INT=0xFF;
|
|
const uint16_t WDT_MAX_16INT=0xFFFF;
|
|
const uint32_t WDT_MAX_32INT=0xFFFFFFFF;
|
|
// Since the Due TRNG is so fast we don't need a circular buffer for it
|
|
#ifndef ARDUINO_SAM_DUE
|
|
const uint8_t gWDT_buffer_SIZE=32;
|
|
const uint8_t WDT_POOL_SIZE=8;
|
|
uint8_t gWDT_buffer[gWDT_buffer_SIZE];
|
|
uint8_t gWDT_buffer_position;
|
|
uint8_t gWDT_loop_counter;
|
|
volatile uint8_t gWDT_pool_start;
|
|
volatile uint8_t gWDT_pool_end;
|
|
volatile uint8_t gWDT_pool_count;
|
|
volatile uint32_t gWDT_entropy_pool[WDT_POOL_SIZE];
|
|
#endif
|
|
|
|
// This function initializes the global variables needed to implement the circular entropy pool and
|
|
// the buffer that holds the raw Timer 1 values that are used to create the entropy pool. It then
|
|
// Initializes the Watch Dog Timer (WDT) to perform an interrupt every 2048 clock cycles, (about
|
|
// 16 ms) which is as fast as it can be set.
|
|
void EntropyClass::initialize(void)
|
|
{
|
|
#ifndef ARDUINO_SAM_DUE
|
|
gWDT_buffer_position=0;
|
|
gWDT_pool_start = 0;
|
|
gWDT_pool_end = 0;
|
|
gWDT_pool_count = 0;
|
|
#endif
|
|
#if defined(__AVR__)
|
|
cli(); // Temporarily turn off interrupts, until WDT configured
|
|
MCUSR = 0; // Use the MCU status register to reset flags for WDR, BOR, EXTR, and POWR
|
|
_WD_CONTROL_REG |= (1<<_WD_CHANGE_BIT) | (1<<WDE);
|
|
// WDTCSR |= _BV(WDCE) | _BV(WDE);// WDT control register, This sets the Watchdog Change Enable (WDCE) flag, which is needed to set the
|
|
_WD_CONTROL_REG = _BV(WDIE); // Watchdog system reset (WDE) enable and the Watchdog interrupt enable (WDIE)
|
|
sei(); // Turn interupts on
|
|
#elif defined(ARDUINO_SAM_DUE)
|
|
pmc_enable_periph_clk(ID_TRNG);
|
|
TRNG->TRNG_IDR = 0xFFFFFFFF;
|
|
TRNG->TRNG_CR = TRNG_CR_KEY(0x524e47) | TRNG_CR_ENABLE;
|
|
#elif defined(__arm__) && defined(TEENSYDUINO)
|
|
SIM_SCGC5 |= SIM_SCGC5_LPTIMER;
|
|
LPTMR0_CSR = 0b10000100;
|
|
LPTMR0_PSR = 0b00000101; // PCS=01 : 1 kHz clock
|
|
LPTMR0_CMR = 0x0006; // smaller number = faster random numbers...
|
|
LPTMR0_CSR = 0b01000101;
|
|
NVIC_ENABLE_IRQ(IRQ_LPTMR);
|
|
#endif
|
|
}
|
|
|
|
// This function returns a uniformly distributed random integer in the range
|
|
// of [0,0xFFFFFFFF] as long as some entropy exists in the pool and a 0
|
|
// otherwise. To ensure a proper random return the available() function
|
|
// should be called first to ensure that entropy exists.
|
|
//
|
|
// The pool is implemented as an 8 value circular buffer
|
|
uint32_t EntropyClass::random(void)
|
|
{
|
|
#ifdef ARDUINO_SAM_DUE
|
|
while (! (TRNG->TRNG_ISR & TRNG_ISR_DATRDY))
|
|
;
|
|
retVal = TRNG->TRNG_ODATA;
|
|
#else
|
|
uint8_t waiting;
|
|
while (gWDT_pool_count < 1)
|
|
waiting += 1;
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
|
|
{
|
|
retVal = gWDT_entropy_pool[gWDT_pool_start];
|
|
gWDT_pool_start = (gWDT_pool_start + 1) % WDT_POOL_SIZE;
|
|
--gWDT_pool_count;
|
|
}
|
|
#endif
|
|
return(retVal);
|
|
}
|
|
|
|
// This function returns one byte of a single 32-bit entropy value, while preserving the remaining bytes to
|
|
// be returned upon successive calls to the method. This makes best use of the available entropy pool when
|
|
// only bytes size chunks of entropy are needed. Not available to public use since there is a method of using
|
|
// the default random method for the end-user to achieve the same results. This internal method is for providing
|
|
// that capability to the random method, shown below
|
|
uint8_t EntropyClass::random8(void)
|
|
{
|
|
static uint8_t byte_position=0;
|
|
uint8_t retVal8;
|
|
|
|
if (byte_position == 0)
|
|
share_entropy.int32 = random();
|
|
retVal8 = share_entropy.int8[byte_position++];
|
|
byte_position = byte_position % 4;
|
|
return(retVal8);
|
|
}
|
|
|
|
// This function returns one word of a single 32-bit entropy value, while preserving the remaining word to
|
|
// be returned upon successive calls to the method. This makes best use of the available entropy pool when
|
|
// only word sized chunks of entropy are needed. Not available to public use since there is a method of using
|
|
// the default random method for the end-user to achieve the same results. This internal method is for providing
|
|
// that capability to the random method, shown below
|
|
uint16_t EntropyClass::random16(void)
|
|
{
|
|
static uint8_t word_position=0;
|
|
uint16_t retVal16;
|
|
|
|
if (word_position == 0)
|
|
share_entropy.int32 = random();
|
|
retVal16 = share_entropy.int16[word_position++];
|
|
word_position = word_position % 2;
|
|
return(retVal16);
|
|
}
|
|
|
|
uint8_t EntropyClass::randomByte(void)
|
|
{
|
|
return random8();
|
|
}
|
|
|
|
uint16_t EntropyClass::randomWord(void)
|
|
{
|
|
return random16();
|
|
}
|
|
|
|
// This function returns a uniformly distributed integer in the range of
|
|
// of [0,max). The added complexity of this function is required to ensure
|
|
// a uniform distribution since the naive modulus max (% max) introduces
|
|
// bias for all values of max that are not powers of two.
|
|
//
|
|
// The loops below are needed, because there is a small and non-uniform chance
|
|
// That the division below will yield an answer = max, so we just get
|
|
// the next random value until answer < max. Which prevents the introduction
|
|
// of bias caused by the division process. This is why we can't use the
|
|
// simpler modulus operation which introduces significant bias for divisors
|
|
// that aren't a power of two
|
|
uint32_t EntropyClass::random(uint32_t max)
|
|
{
|
|
uint32_t slice;
|
|
|
|
if (max < 2)
|
|
retVal=0;
|
|
else
|
|
{
|
|
retVal = WDT_MAX_32INT;
|
|
if (max <= WDT_MAX_8INT) // If only byte values are needed, make best use of entropy
|
|
{ // by diving the long into four bytes and using individually
|
|
slice = WDT_MAX_8INT / max;
|
|
while (retVal >= max)
|
|
retVal = random8() / slice;
|
|
}
|
|
else if (max <= WDT_MAX_16INT) // If only word values are need, make best use of entropy
|
|
{ // by diving the long into two words and using individually
|
|
slice = WDT_MAX_16INT / max;
|
|
while (retVal >= max)
|
|
retVal = random16() / slice;
|
|
}
|
|
else
|
|
{
|
|
slice = WDT_MAX_32INT / max;
|
|
while (retVal >= max)
|
|
retVal = random() / slice;
|
|
}
|
|
}
|
|
return(retVal);
|
|
}
|
|
|
|
// This function returns a uniformly distributed integer in the range of
|
|
// of [min,max).
|
|
uint32_t EntropyClass::random(uint32_t min, uint32_t max)
|
|
{
|
|
uint32_t tmp_random, tmax;
|
|
|
|
tmax = max - min;
|
|
if (tmax < 1)
|
|
retVal=min;
|
|
else
|
|
{
|
|
tmp_random = random(tmax);
|
|
retVal = min + tmp_random;
|
|
}
|
|
return(retVal);
|
|
}
|
|
|
|
// This function returns a uniformly distributed single precision floating point
|
|
// in the range of [0.0,1.0)
|
|
float EntropyClass::randomf(void)
|
|
{
|
|
float fRetVal;
|
|
|
|
// Since c++ doesn't allow bit manipulations of floating point types, we are
|
|
// using integer type and arrange its bit pattern to follow the IEEE754 bit
|
|
// pattern for single precision floating point value in the range of 1.0 - 2.0
|
|
uint32_t tmp_random = random();
|
|
tmp_random = (tmp_random & 0x007FFFFF) | 0x3F800000;
|
|
// We then copy that binary representation from the temporary integer to the
|
|
// returned floating point value
|
|
memcpy((void *) &fRetVal, (void *) &tmp_random, sizeof(fRetVal));
|
|
// Now translate the value back to its intended range by subtracting 1.0
|
|
fRetVal = fRetVal - 1.0;
|
|
return (fRetVal);
|
|
}
|
|
|
|
// This function returns a uniformly distributed single precision floating point
|
|
// in the range of [0.0, max)
|
|
float EntropyClass::randomf(float max)
|
|
{
|
|
float fRetVal;
|
|
fRetVal = randomf() * max;
|
|
return(fRetVal);
|
|
}
|
|
|
|
// This function returns a uniformly distributed single precision floating point
|
|
// in the range of [min, max)
|
|
float EntropyClass::randomf(float min,float max)
|
|
{
|
|
float fRetVal;
|
|
float tmax;
|
|
tmax = max - min;
|
|
fRetVal = (randomf() * tmax) + min;
|
|
return(fRetVal);
|
|
}
|
|
|
|
// This function implements the Marsaglia polar method of converting a uniformly
|
|
// distributed random numbers to a normaly distributed (bell curve) with the
|
|
// mean and standard deviation specified. This type of random number is useful
|
|
// for a variety of purposes, like Monte Carlo simulations.
|
|
float EntropyClass::rnorm(float mean, float stdDev)
|
|
{
|
|
static float spare;
|
|
static float u1;
|
|
static float u2;
|
|
static float s;
|
|
static bool isSpareReady = false;
|
|
|
|
if (isSpareReady)
|
|
{
|
|
isSpareReady = false;
|
|
return ((spare * stdDev) + mean);
|
|
} else {
|
|
do {
|
|
u1 = (randomf() * 2) - 1;
|
|
u2 = (randomf() * 2) - 1;
|
|
s = (u1 * u1) + (u2 * u2);
|
|
} while (s >= 1.0);
|
|
s = sqrt(-2.0 * log(s) / s);
|
|
spare = u2 * s;
|
|
isSpareReady = true;
|
|
return(mean + (stdDev * u1 * s));
|
|
}
|
|
}
|
|
|
|
// This function returns a unsigned char (8-bit) with the number of unsigned long values
|
|
// in the entropy pool
|
|
uint8_t EntropyClass::available(void)
|
|
{
|
|
#ifdef ARDUINO_SAM_DUE
|
|
return(TRNG->TRNG_ISR & TRNG_ISR_DATRDY);
|
|
#else
|
|
return(gWDT_pool_count);
|
|
#endif
|
|
}
|
|
|
|
// Circular buffer is not needed with the speed of the Arduino Due trng hardware generator
|
|
#ifndef ARDUINO_SAM_DUE
|
|
// This interrupt service routine is called every time the WDT interrupt is triggered.
|
|
// With the default configuration that is approximately once every 16ms, producing
|
|
// approximately two 32-bit integer values every second.
|
|
//
|
|
// The pool is implemented as an 8 value circular buffer
|
|
static void isr_hardware_neutral(uint8_t val)
|
|
{
|
|
gWDT_buffer[gWDT_buffer_position] = val;
|
|
gWDT_buffer_position++; // every time the WDT interrupt is triggered
|
|
if (gWDT_buffer_position >= gWDT_buffer_SIZE)
|
|
{
|
|
gWDT_pool_end = (gWDT_pool_start + gWDT_pool_count) % WDT_POOL_SIZE;
|
|
// The following code is an implementation of Jenkin's one at a time hash
|
|
// This hash function has had preliminary testing to verify that it
|
|
// produces reasonably uniform random results when using WDT jitter
|
|
// on a variety of Arduino platforms
|
|
for(gWDT_loop_counter = 0; gWDT_loop_counter < gWDT_buffer_SIZE; ++gWDT_loop_counter)
|
|
{
|
|
gWDT_entropy_pool[gWDT_pool_end] += gWDT_buffer[gWDT_loop_counter];
|
|
gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 10);
|
|
gWDT_entropy_pool[gWDT_pool_end] ^= (gWDT_entropy_pool[gWDT_pool_end] >> 6);
|
|
}
|
|
gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 3);
|
|
gWDT_entropy_pool[gWDT_pool_end] ^= (gWDT_entropy_pool[gWDT_pool_end] >> 11);
|
|
gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 15);
|
|
gWDT_entropy_pool[gWDT_pool_end] = gWDT_entropy_pool[gWDT_pool_end];
|
|
gWDT_buffer_position = 0; // Start collecting the next 32 bytes of Timer 1 counts
|
|
if (gWDT_pool_count == WDT_POOL_SIZE) // The entropy pool is full
|
|
gWDT_pool_start = (gWDT_pool_start + 1) % WDT_POOL_SIZE;
|
|
else // Add another unsigned long (32 bits) to the entropy pool
|
|
++gWDT_pool_count;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined( __AVR_ATtiny25__ ) || defined( __AVR_ATtiny45__ ) || defined( __AVR_ATtiny85__ )
|
|
ISR(WDT_vect)
|
|
{
|
|
isr_hardware_neutral(TCNT0);
|
|
}
|
|
|
|
#elif defined(__AVR__)
|
|
ISR(WDT_vect)
|
|
{
|
|
isr_hardware_neutral(TCNT1L); // Record the Timer 1 low byte (only one needed)
|
|
}
|
|
|
|
#elif defined(__arm__) && defined(TEENSYDUINO)
|
|
void lptmr_isr(void)
|
|
{
|
|
LPTMR0_CSR = 0b10000100;
|
|
LPTMR0_CSR = 0b01000101;
|
|
isr_hardware_neutral(SYST_CVR);
|
|
}
|
|
#endif
|
|
|
|
// The library implements a single global instance. There is no need, nor will the library
|
|
// work properly if multiple instances are created.
|
|
EntropyClass Entropy;
|