#!/usr/bin/env python3 from nyancat import Nyancat INTERVAL = 1 / 20 WAVE_FACTOR = 3 class NyancatSignal(Nyancat): def __init__(self, w, h, signal): super().__init__(w, h) self.signal = signal self.samples_history = [[0] * int(INTERVAL * signal.sample_rate * WAVE_FACTOR)] * 6 def plot_tail(self, width): # Calculate the wave samples = self.signal.get_signal(INTERVAL) samples_offset = 0 smallest_diff = float('inf') # Find a part in the new sample window that resembles the previous one. for i in range(min(len(samples), len(self.samples_history[-1])) - width * WAVE_FACTOR): z = zip(self.samples_history[-1][0:width], samples[i:i + width * WAVE_FACTOR]) diff = sum(map(lambda t: (t[0] - t[1]) ** 2, z)) if diff < smallest_diff: samples_offset = i smallest_diff = diff assert samples_offset + width * WAVE_FACTOR < len(samples), 'w=%d < len=%d' % (samples_offset + width * WAVE_FACTOR, len(samples)) self.samples_history.append(samples[samples_offset:samples_offset + width * WAVE_FACTOR]) self.samples_history.pop(0) # Render the tail for x in range(width): amplitude = sum(map(lambda hist: hist[x * WAVE_FACTOR], self.samples_history)) / len(self.samples_history) * 3 yield int((amplitude * .5 - .5) * self.height) + self.height