// Entropy - A entropy (random number) generator for the Arduino // The latest version of this library will always be stored in the following // google code repository: // http://code.google.com/p/avr-hardware-random-number-generation/source/browse/#git%2FEntropy // with more information available on the libraries wiki page // http://code.google.com/p/avr-hardware-random-number-generation/wiki/WikiAVRentropy // // Copyright 2014 by Walter Anderson // // This file is part of Entropy, an Arduino library. // Entropy is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // Entropy is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with Entropy. If not, see . #include #include "Entropy.h" const uint8_t WDT_MAX_8INT=0xFF; const uint16_t WDT_MAX_16INT=0xFFFF; const uint32_t WDT_MAX_32INT=0xFFFFFFFF; // Since the Due TRNG is so fast we don't need a circular buffer for it #ifndef ARDUINO_SAM_DUE const uint8_t gWDT_buffer_SIZE=32; const uint8_t WDT_POOL_SIZE=8; uint8_t gWDT_buffer[gWDT_buffer_SIZE]; uint8_t gWDT_buffer_position; uint8_t gWDT_loop_counter; volatile uint8_t gWDT_pool_start; volatile uint8_t gWDT_pool_end; volatile uint8_t gWDT_pool_count; volatile uint32_t gWDT_entropy_pool[WDT_POOL_SIZE]; #endif // This function initializes the global variables needed to implement the circular entropy pool and // the buffer that holds the raw Timer 1 values that are used to create the entropy pool. It then // Initializes the Watch Dog Timer (WDT) to perform an interrupt every 2048 clock cycles, (about // 16 ms) which is as fast as it can be set. void EntropyClass::initialize(void) { #ifndef ARDUINO_SAM_DUE gWDT_buffer_position=0; gWDT_pool_start = 0; gWDT_pool_end = 0; gWDT_pool_count = 0; #endif #if defined(__AVR__) cli(); // Temporarily turn off interrupts, until WDT configured MCUSR = 0; // Use the MCU status register to reset flags for WDR, BOR, EXTR, and POWR _WD_CONTROL_REG |= (1<<_WD_CHANGE_BIT) | (1<TRNG_IDR = 0xFFFFFFFF; TRNG->TRNG_CR = TRNG_CR_KEY(0x524e47) | TRNG_CR_ENABLE; #elif defined(__arm__) && defined(TEENSYDUINO) SIM_SCGC5 |= SIM_SCGC5_LPTIMER; LPTMR0_CSR = 0b10000100; LPTMR0_PSR = 0b00000101; // PCS=01 : 1 kHz clock LPTMR0_CMR = 0x0006; // smaller number = faster random numbers... LPTMR0_CSR = 0b01000101; NVIC_ENABLE_IRQ(IRQ_LPTMR); #endif } // This function returns a uniformly distributed random integer in the range // of [0,0xFFFFFFFF] as long as some entropy exists in the pool and a 0 // otherwise. To ensure a proper random return the available() function // should be called first to ensure that entropy exists. // // The pool is implemented as an 8 value circular buffer uint32_t EntropyClass::random(void) { #ifdef ARDUINO_SAM_DUE while (! (TRNG->TRNG_ISR & TRNG_ISR_DATRDY)) ; retVal = TRNG->TRNG_ODATA; #else uint8_t waiting; while (gWDT_pool_count < 1) waiting += 1; ATOMIC_BLOCK(ATOMIC_RESTORESTATE) { retVal = gWDT_entropy_pool[gWDT_pool_start]; gWDT_pool_start = (gWDT_pool_start + 1) % WDT_POOL_SIZE; --gWDT_pool_count; } #endif return(retVal); } // This function returns one byte of a single 32-bit entropy value, while preserving the remaining bytes to // be returned upon successive calls to the method. This makes best use of the available entropy pool when // only bytes size chunks of entropy are needed. Not available to public use since there is a method of using // the default random method for the end-user to achieve the same results. This internal method is for providing // that capability to the random method, shown below uint8_t EntropyClass::random8(void) { static uint8_t byte_position=0; uint8_t retVal8; if (byte_position == 0) share_entropy.int32 = random(); retVal8 = share_entropy.int8[byte_position++]; byte_position = byte_position % 4; return(retVal8); } // This function returns one word of a single 32-bit entropy value, while preserving the remaining word to // be returned upon successive calls to the method. This makes best use of the available entropy pool when // only word sized chunks of entropy are needed. Not available to public use since there is a method of using // the default random method for the end-user to achieve the same results. This internal method is for providing // that capability to the random method, shown below uint16_t EntropyClass::random16(void) { static uint8_t word_position=0; uint16_t retVal16; if (word_position == 0) share_entropy.int32 = random(); retVal16 = share_entropy.int16[word_position++]; word_position = word_position % 2; return(retVal16); } uint8_t EntropyClass::randomByte(void) { return random8(); } uint16_t EntropyClass::randomWord(void) { return random16(); } // This function returns a uniformly distributed integer in the range of // of [0,max). The added complexity of this function is required to ensure // a uniform distribution since the naive modulus max (% max) introduces // bias for all values of max that are not powers of two. // // The loops below are needed, because there is a small and non-uniform chance // That the division below will yield an answer = max, so we just get // the next random value until answer < max. Which prevents the introduction // of bias caused by the division process. This is why we can't use the // simpler modulus operation which introduces significant bias for divisors // that aren't a power of two uint32_t EntropyClass::random(uint32_t max) { uint32_t slice; if (max < 2) retVal=0; else { retVal = WDT_MAX_32INT; if (max <= WDT_MAX_8INT) // If only byte values are needed, make best use of entropy { // by diving the long into four bytes and using individually slice = WDT_MAX_8INT / max; while (retVal >= max) retVal = random8() / slice; } else if (max <= WDT_MAX_16INT) // If only word values are need, make best use of entropy { // by diving the long into two words and using individually slice = WDT_MAX_16INT / max; while (retVal >= max) retVal = random16() / slice; } else { slice = WDT_MAX_32INT / max; while (retVal >= max) retVal = random() / slice; } } return(retVal); } // This function returns a uniformly distributed integer in the range of // of [min,max). uint32_t EntropyClass::random(uint32_t min, uint32_t max) { uint32_t tmp_random, tmax; tmax = max - min; if (tmax < 1) retVal=min; else { tmp_random = random(tmax); retVal = min + tmp_random; } return(retVal); } // This function returns a uniformly distributed single precision floating point // in the range of [0.0,1.0) float EntropyClass::randomf(void) { float fRetVal; // Since c++ doesn't allow bit manipulations of floating point types, we are // using integer type and arrange its bit pattern to follow the IEEE754 bit // pattern for single precision floating point value in the range of 1.0 - 2.0 uint32_t tmp_random = random(); tmp_random = (tmp_random & 0x007FFFFF) | 0x3F800000; // We then copy that binary representation from the temporary integer to the // returned floating point value memcpy((void *) &fRetVal, (void *) &tmp_random, sizeof(fRetVal)); // Now translate the value back to its intended range by subtracting 1.0 fRetVal = fRetVal - 1.0; return (fRetVal); } // This function returns a uniformly distributed single precision floating point // in the range of [0.0, max) float EntropyClass::randomf(float max) { float fRetVal; fRetVal = randomf() * max; return(fRetVal); } // This function returns a uniformly distributed single precision floating point // in the range of [min, max) float EntropyClass::randomf(float min,float max) { float fRetVal; float tmax; tmax = max - min; fRetVal = (randomf() * tmax) + min; return(fRetVal); } // This function implements the Marsaglia polar method of converting a uniformly // distributed random numbers to a normaly distributed (bell curve) with the // mean and standard deviation specified. This type of random number is useful // for a variety of purposes, like Monte Carlo simulations. float EntropyClass::rnorm(float mean, float stdDev) { static float spare; static float u1; static float u2; static float s; static bool isSpareReady = false; if (isSpareReady) { isSpareReady = false; return ((spare * stdDev) + mean); } else { do { u1 = (randomf() * 2) - 1; u2 = (randomf() * 2) - 1; s = (u1 * u1) + (u2 * u2); } while (s >= 1.0); s = sqrt(-2.0 * log(s) / s); spare = u2 * s; isSpareReady = true; return(mean + (stdDev * u1 * s)); } } // This function returns a unsigned char (8-bit) with the number of unsigned long values // in the entropy pool uint8_t EntropyClass::available(void) { #ifdef ARDUINO_SAM_DUE return(TRNG->TRNG_ISR & TRNG_ISR_DATRDY); #else return(gWDT_pool_count); #endif } // Circular buffer is not needed with the speed of the Arduino Due trng hardware generator #ifndef ARDUINO_SAM_DUE // This interrupt service routine is called every time the WDT interrupt is triggered. // With the default configuration that is approximately once every 16ms, producing // approximately two 32-bit integer values every second. // // The pool is implemented as an 8 value circular buffer static void isr_hardware_neutral(uint8_t val) { gWDT_buffer[gWDT_buffer_position] = val; gWDT_buffer_position++; // every time the WDT interrupt is triggered if (gWDT_buffer_position >= gWDT_buffer_SIZE) { gWDT_pool_end = (gWDT_pool_start + gWDT_pool_count) % WDT_POOL_SIZE; // The following code is an implementation of Jenkin's one at a time hash // This hash function has had preliminary testing to verify that it // produces reasonably uniform random results when using WDT jitter // on a variety of Arduino platforms for(gWDT_loop_counter = 0; gWDT_loop_counter < gWDT_buffer_SIZE; ++gWDT_loop_counter) { gWDT_entropy_pool[gWDT_pool_end] += gWDT_buffer[gWDT_loop_counter]; gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 10); gWDT_entropy_pool[gWDT_pool_end] ^= (gWDT_entropy_pool[gWDT_pool_end] >> 6); } gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 3); gWDT_entropy_pool[gWDT_pool_end] ^= (gWDT_entropy_pool[gWDT_pool_end] >> 11); gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 15); gWDT_entropy_pool[gWDT_pool_end] = gWDT_entropy_pool[gWDT_pool_end]; gWDT_buffer_position = 0; // Start collecting the next 32 bytes of Timer 1 counts if (gWDT_pool_count == WDT_POOL_SIZE) // The entropy pool is full gWDT_pool_start = (gWDT_pool_start + 1) % WDT_POOL_SIZE; else // Add another unsigned long (32 bits) to the entropy pool ++gWDT_pool_count; } } #endif #if defined( __AVR_ATtiny25__ ) || defined( __AVR_ATtiny45__ ) || defined( __AVR_ATtiny85__ ) ISR(WDT_vect) { isr_hardware_neutral(TCNT0); } #elif defined(__AVR__) ISR(WDT_vect) { isr_hardware_neutral(TCNT1L); // Record the Timer 1 low byte (only one needed) } #elif defined(__arm__) && defined(TEENSYDUINO) void lptmr_isr(void) { LPTMR0_CSR = 0b10000100; LPTMR0_CSR = 0b01000101; isr_hardware_neutral(SYST_CVR); } #endif // The library implements a single global instance. There is no need, nor will the library // work properly if multiple instances are created. EntropyClass Entropy;