Update to new hardware with custom door lock hardware

This commit is contained in:
Jeroen Stroeve 2024-08-12 20:26:52 +02:00
parent 7db14dedbd
commit 909dd3b162
2 changed files with 234 additions and 19 deletions

View file

@ -7,15 +7,37 @@
#include "Entropy.h"
#include "sha1.h"
#define PIN_HORN 6
#define PIN_OPEN 5
#define PIN_CLOSE 4
#include <Arduino.h>
// Motor steps per revolution. Most steppers are 200 steps or 1.8 degrees/step
#define MOTOR_STEPS 100
#define RPM 120
#define DIR A0
#define STEP 9
#include "A4988.h"
A4988 stepper(MOTOR_STEPS, DIR, STEP);
#define INPUT_SOLENOID 4
#define INPUT_HORN 3
#define PIN_LEDSOLENOID 6
#define PIN_LEDHORN 5
bool StateSolenoid = false;
bool StateHorn = false;
uint32_t SolenoidStartTime;
#define PIN_DOORPOWER A3
#define PIN_SOLENOID A5
#define PIN_HORN A4
#define PIN_OPEN 8
#define PIN_CLOSE 7
#define PIN_1WIRE 13
#define PIN_LEDGREEN 10
#define PIN_LEDRED 11
#define PIN_MAINS_POWER 9
#define PIN_MAINS_POWER A2
#define CMD_BUFSIZE 64
#define CMD_TIMEOUT 10000 //command timeout in milliseconds
@ -145,6 +167,16 @@ void setup()
Serial.begin(115200);
Serial.println("DEBUG: Board started");
stepper.begin(RPM);
stepper.enable();
stepper.setMicrostep(1); // Set microstep mode to 1:1
pinMode(INPUT_SOLENOID, INPUT_PULLUP);
pinMode(INPUT_HORN, INPUT_PULLUP);
pinMode(PIN_LEDSOLENOID, OUTPUT);
pinMode(PIN_LEDHORN, OUTPUT);
pinMode(PIN_DOORPOWER, OUTPUT);
pinMode(PIN_SOLENOID, OUTPUT);
pinMode(PIN_OPEN, OUTPUT);
pinMode(PIN_CLOSE, OUTPUT);
pinMode(PIN_HORN, OUTPUT);
@ -153,6 +185,10 @@ void setup()
pinMode(PIN_LEDRED, OUTPUT);
pinMode(PIN_MAINS_POWER, INPUT);
digitalWrite(PIN_OPEN, LOW);
digitalWrite(PIN_CLOSE, LOW);
digitalWrite(PIN_DOORPOWER, LOW);
SetLEDState(LEDState_Off);
Entropy.initialize();
@ -501,28 +537,25 @@ void ToggleLock()
{
g_lockopen = false;
Serial.println("closing lock");
for (uint8_t i = 0; i < 3; i++)
{
digitalWrite(PIN_DOORPOWER, HIGH);
digitalWrite(PIN_CLOSE, HIGH);
DelayLEDs(BUTTON_TIME);
digitalWrite(PIN_CLOSE, LOW);
DelayLEDs(TOGGLE_TIME - BUTTON_TIME);
}
}
else
{
g_lockopen = true;
Serial.println("opening lock");
for (uint8_t i = 0; i < 3; i++)
{
digitalWrite(PIN_DOORPOWER, HIGH);
digitalWrite(PIN_OPEN, HIGH);
DelayLEDs(BUTTON_TIME);
digitalWrite(PIN_OPEN, LOW);
DelayLEDs(TOGGLE_TIME - BUTTON_TIME);
}
}
DelayLEDs(4000);
digitalWrite(PIN_OPEN, LOW);
digitalWrite(PIN_CLOSE, LOW);
digitalWrite(PIN_DOORPOWER, LOW);
Serial.println("finished lock action");
}
@ -570,6 +603,15 @@ void loop()
Serial.print("iButton authenticated\n");
ToggleLock();
deniedcount = 0;
if(g_lockopen == true){
StateSolenoid = true;
SolenoidStartTime = millis();
Serial.print("Solenoid activated\n");
digitalWrite(PIN_SOLENOID, HIGH);
stepper.move(MOTOR_STEPS*(RPM/60)*10);
}
}
else
{
@ -592,6 +634,34 @@ void loop()
}
ProcessLEDs();
digitalWrite(PIN_LEDSOLENOID, HIGH);
digitalWrite(PIN_LEDHORN, HIGH);
if (digitalRead(INPUT_SOLENOID) == LOW) {
if(StateSolenoid == false){
StateSolenoid = true;
SolenoidStartTime = millis();
Serial.print("Solenoid activated\n");
digitalWrite(PIN_SOLENOID, HIGH);
stepper.move(MOTOR_STEPS*(RPM/60)*10);
}
}
if(StateSolenoid == true && ((millis() - SolenoidStartTime) > (10*1000)) ){
digitalWrite(PIN_SOLENOID, LOW);
StateSolenoid = false;
}
if (digitalRead(INPUT_HORN) == LOW) {
if(StateHorn == false){
StateHorn = true;
Serial.print("Horn activated\n");
digitalWrite(PIN_HORN, HIGH);
}
}else{
StateHorn = false;
digitalWrite(PIN_HORN, LOW);
}
}
}

View file

@ -0,0 +1,145 @@
#include <Arduino.h>
// this pin should connect to Ground when want to stop the motor
#define STOPPER_PIN 4
// Motor steps per revolution. Most steppers are 200 steps or 1.8 degrees/step
#define MOTOR_STEPS 400
#define RPM 60
// Acceleration and deceleration values are always in FULL steps / s^2
#define MOTOR_ACCEL 2000
#define MOTOR_DECEL 1000
// Microstepping mode. If you hardwired it to save pins, set to the same value here.
#define MICROSTEPS 8
#define DIR 10
#define STEP 11
#define ENABLE A3 // optional (just delete ENABLE from everywhere if not used)
#define SLEEP 12
#define RESET 13
#include "A4988.h"
#define MS1 A2
#define MS2 A1
#define MS3 A0
A4988 stepper(MOTOR_STEPS, DIR, STEP, ENABLE, MS1, MS2, MS3);
#include <ams_as5048b.h>
//unit consts
#define U_RAW 1
#define U_TRN 2
#define U_DEG 3
#define U_RAD 4
#define U_GRAD 5
#define U_MOA 6
#define U_SOA 7
#define U_MILNATO 8
#define U_MILSE 9
#define U_MILRU 10
AMS_AS5048B mysensor;
#define DOOR_OPEN 3
#define DOOR_CLOSE 2
#define STATE_IDLE 0
#define STATE_OPEN 1
#define STATE_CLOSE 2
int state = STATE_IDLE;
int angle_prev = 0;
int angle = 0;
int angle_steps = 0;
void setup() {
Serial.begin(115200);
pinMode(SLEEP, OUTPUT);
pinMode(RESET, OUTPUT);
digitalWrite(SLEEP, HIGH);
digitalWrite(RESET, HIGH);
// Configure stopper pin to read HIGH unless grounded
pinMode(STOPPER_PIN, INPUT_PULLUP);
stepper.begin(RPM, MICROSTEPS);
stepper.disable();
//stepper.setSpeedProfile(stepper.LINEAR_SPEED, MOTOR_ACCEL, MOTOR_DECEL);
stepper.setSpeedProfile(stepper.CONSTANT_SPEED, MOTOR_ACCEL, MOTOR_DECEL);
//init AMS_AS5048B object
mysensor.begin();
pinMode(DOOR_OPEN, INPUT);
pinMode(DOOR_CLOSE, INPUT);
Serial.println("START");
stepper.setEnableActiveState(LOW);
// stepper.enable();
// stepper.rotate(360);
// Serial.println("START2");
if (digitalRead(DOOR_OPEN) == HIGH && state == STATE_IDLE){
state = STATE_OPEN;
Serial.println("RECEIVED OPEN");
stepper.enable();
stepper.startRotate(-560);
}
if (digitalRead(DOOR_CLOSE) == HIGH && state == STATE_IDLE){
state = STATE_CLOSE;
Serial.println("RECEIVED CLOSE");
stepper.enable();
stepper.startRotate(560);
}
}
void loop() {
static int step = 0;
if(state != STATE_IDLE && millis()%50 == 0){
angle_prev = angle;
angle = mysensor.angleR(U_DEG, true);
angle_steps++;
Serial.print("Time : ");
Serial.print(millis(), DEC);
Serial.print(" Angle : ");
Serial.print(angle, DEC);
Serial.print(" angle prev : ");
Serial.println(angle_prev, DEC);
if(angle_steps > 5 && (angle_prev - angle) >= -5 && (angle_prev - angle) <= 5){
Serial.println("STOPPER REACHED");
stepper.stop();
stepper.disable();
state = STATE_IDLE;
step = 0;
angle_steps = 0;
delay(10000);
Serial.println("FINISHED");
}
}
// motor control loop - send pulse and return how long to wait until next pulse
unsigned wait_time = stepper.nextAction();
// Serial.println(wait_time);
step++;
// 0 wait time indicates the motor has stopped
if (state != STATE_IDLE && wait_time <= 0) {
stepper.disable(); // comment out to keep motor powered
Serial.println("END");
state = STATE_IDLE;
step = 0;
angle_steps = 0;
delay(10000);
Serial.println("FINISHED");
}
}