first checkin

This commit is contained in:
Bob 2015-10-04 17:27:19 +02:00
commit 33c1f968f2
15 changed files with 3574 additions and 0 deletions

View file

@ -0,0 +1,344 @@
// Entropy - A entropy (random number) generator for the Arduino
// The latest version of this library will always be stored in the following
// google code repository:
// http://code.google.com/p/avr-hardware-random-number-generation/source/browse/#git%2FEntropy
// with more information available on the libraries wiki page
// http://code.google.com/p/avr-hardware-random-number-generation/wiki/WikiAVRentropy
//
// Copyright 2014 by Walter Anderson
//
// This file is part of Entropy, an Arduino library.
// Entropy is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Entropy is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Entropy. If not, see <http://www.gnu.org/licenses/>.
#include <Arduino.h>
#include "Entropy.h"
const uint8_t WDT_MAX_8INT=0xFF;
const uint16_t WDT_MAX_16INT=0xFFFF;
const uint32_t WDT_MAX_32INT=0xFFFFFFFF;
// Since the Due TRNG is so fast we don't need a circular buffer for it
#ifndef ARDUINO_SAM_DUE
const uint8_t gWDT_buffer_SIZE=32;
const uint8_t WDT_POOL_SIZE=8;
uint8_t gWDT_buffer[gWDT_buffer_SIZE];
uint8_t gWDT_buffer_position;
uint8_t gWDT_loop_counter;
volatile uint8_t gWDT_pool_start;
volatile uint8_t gWDT_pool_end;
volatile uint8_t gWDT_pool_count;
volatile uint32_t gWDT_entropy_pool[WDT_POOL_SIZE];
#endif
// This function initializes the global variables needed to implement the circular entropy pool and
// the buffer that holds the raw Timer 1 values that are used to create the entropy pool. It then
// Initializes the Watch Dog Timer (WDT) to perform an interrupt every 2048 clock cycles, (about
// 16 ms) which is as fast as it can be set.
void EntropyClass::initialize(void)
{
#ifndef ARDUINO_SAM_DUE
gWDT_buffer_position=0;
gWDT_pool_start = 0;
gWDT_pool_end = 0;
gWDT_pool_count = 0;
#endif
#if defined(__AVR__)
cli(); // Temporarily turn off interrupts, until WDT configured
MCUSR = 0; // Use the MCU status register to reset flags for WDR, BOR, EXTR, and POWR
_WD_CONTROL_REG |= (1<<_WD_CHANGE_BIT) | (1<<WDE);
// WDTCSR |= _BV(WDCE) | _BV(WDE);// WDT control register, This sets the Watchdog Change Enable (WDCE) flag, which is needed to set the
_WD_CONTROL_REG = _BV(WDIE); // Watchdog system reset (WDE) enable and the Watchdog interrupt enable (WDIE)
sei(); // Turn interupts on
#elif defined(ARDUINO_SAM_DUE)
pmc_enable_periph_clk(ID_TRNG);
TRNG->TRNG_IDR = 0xFFFFFFFF;
TRNG->TRNG_CR = TRNG_CR_KEY(0x524e47) | TRNG_CR_ENABLE;
#elif defined(__arm__) && defined(TEENSYDUINO)
SIM_SCGC5 |= SIM_SCGC5_LPTIMER;
LPTMR0_CSR = 0b10000100;
LPTMR0_PSR = 0b00000101; // PCS=01 : 1 kHz clock
LPTMR0_CMR = 0x0006; // smaller number = faster random numbers...
LPTMR0_CSR = 0b01000101;
NVIC_ENABLE_IRQ(IRQ_LPTMR);
#endif
}
// This function returns a uniformly distributed random integer in the range
// of [0,0xFFFFFFFF] as long as some entropy exists in the pool and a 0
// otherwise. To ensure a proper random return the available() function
// should be called first to ensure that entropy exists.
//
// The pool is implemented as an 8 value circular buffer
uint32_t EntropyClass::random(void)
{
#ifdef ARDUINO_SAM_DUE
while (! (TRNG->TRNG_ISR & TRNG_ISR_DATRDY))
;
retVal = TRNG->TRNG_ODATA;
#else
uint8_t waiting;
while (gWDT_pool_count < 1)
waiting += 1;
ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
{
retVal = gWDT_entropy_pool[gWDT_pool_start];
gWDT_pool_start = (gWDT_pool_start + 1) % WDT_POOL_SIZE;
--gWDT_pool_count;
}
#endif
return(retVal);
}
// This function returns one byte of a single 32-bit entropy value, while preserving the remaining bytes to
// be returned upon successive calls to the method. This makes best use of the available entropy pool when
// only bytes size chunks of entropy are needed. Not available to public use since there is a method of using
// the default random method for the end-user to achieve the same results. This internal method is for providing
// that capability to the random method, shown below
uint8_t EntropyClass::random8(void)
{
static uint8_t byte_position=0;
uint8_t retVal8;
if (byte_position == 0)
share_entropy.int32 = random();
retVal8 = share_entropy.int8[byte_position++];
byte_position = byte_position % 4;
return(retVal8);
}
// This function returns one word of a single 32-bit entropy value, while preserving the remaining word to
// be returned upon successive calls to the method. This makes best use of the available entropy pool when
// only word sized chunks of entropy are needed. Not available to public use since there is a method of using
// the default random method for the end-user to achieve the same results. This internal method is for providing
// that capability to the random method, shown below
uint16_t EntropyClass::random16(void)
{
static uint8_t word_position=0;
uint16_t retVal16;
if (word_position == 0)
share_entropy.int32 = random();
retVal16 = share_entropy.int16[word_position++];
word_position = word_position % 2;
return(retVal16);
}
uint8_t EntropyClass::randomByte(void)
{
return random8();
}
uint16_t EntropyClass::randomWord(void)
{
return random16();
}
// This function returns a uniformly distributed integer in the range of
// of [0,max). The added complexity of this function is required to ensure
// a uniform distribution since the naive modulus max (% max) introduces
// bias for all values of max that are not powers of two.
//
// The loops below are needed, because there is a small and non-uniform chance
// That the division below will yield an answer = max, so we just get
// the next random value until answer < max. Which prevents the introduction
// of bias caused by the division process. This is why we can't use the
// simpler modulus operation which introduces significant bias for divisors
// that aren't a power of two
uint32_t EntropyClass::random(uint32_t max)
{
uint32_t slice;
if (max < 2)
retVal=0;
else
{
retVal = WDT_MAX_32INT;
if (max <= WDT_MAX_8INT) // If only byte values are needed, make best use of entropy
{ // by diving the long into four bytes and using individually
slice = WDT_MAX_8INT / max;
while (retVal >= max)
retVal = random8() / slice;
}
else if (max <= WDT_MAX_16INT) // If only word values are need, make best use of entropy
{ // by diving the long into two words and using individually
slice = WDT_MAX_16INT / max;
while (retVal >= max)
retVal = random16() / slice;
}
else
{
slice = WDT_MAX_32INT / max;
while (retVal >= max)
retVal = random() / slice;
}
}
return(retVal);
}
// This function returns a uniformly distributed integer in the range of
// of [min,max).
uint32_t EntropyClass::random(uint32_t min, uint32_t max)
{
uint32_t tmp_random, tmax;
tmax = max - min;
if (tmax < 1)
retVal=min;
else
{
tmp_random = random(tmax);
retVal = min + tmp_random;
}
return(retVal);
}
// This function returns a uniformly distributed single precision floating point
// in the range of [0.0,1.0)
float EntropyClass::randomf(void)
{
float fRetVal;
// Since c++ doesn't allow bit manipulations of floating point types, we are
// using integer type and arrange its bit pattern to follow the IEEE754 bit
// pattern for single precision floating point value in the range of 1.0 - 2.0
uint32_t tmp_random = random();
tmp_random = (tmp_random & 0x007FFFFF) | 0x3F800000;
// We then copy that binary representation from the temporary integer to the
// returned floating point value
memcpy((void *) &fRetVal, (void *) &tmp_random, sizeof(fRetVal));
// Now translate the value back to its intended range by subtracting 1.0
fRetVal = fRetVal - 1.0;
return (fRetVal);
}
// This function returns a uniformly distributed single precision floating point
// in the range of [0.0, max)
float EntropyClass::randomf(float max)
{
float fRetVal;
fRetVal = randomf() * max;
return(fRetVal);
}
// This function returns a uniformly distributed single precision floating point
// in the range of [min, max)
float EntropyClass::randomf(float min,float max)
{
float fRetVal;
float tmax;
tmax = max - min;
fRetVal = (randomf() * tmax) + min;
return(fRetVal);
}
// This function implements the Marsaglia polar method of converting a uniformly
// distributed random numbers to a normaly distributed (bell curve) with the
// mean and standard deviation specified. This type of random number is useful
// for a variety of purposes, like Monte Carlo simulations.
float EntropyClass::rnorm(float mean, float stdDev)
{
static float spare;
static float u1;
static float u2;
static float s;
static bool isSpareReady = false;
if (isSpareReady)
{
isSpareReady = false;
return ((spare * stdDev) + mean);
} else {
do {
u1 = (randomf() * 2) - 1;
u2 = (randomf() * 2) - 1;
s = (u1 * u1) + (u2 * u2);
} while (s >= 1.0);
s = sqrt(-2.0 * log(s) / s);
spare = u2 * s;
isSpareReady = true;
return(mean + (stdDev * u1 * s));
}
}
// This function returns a unsigned char (8-bit) with the number of unsigned long values
// in the entropy pool
uint8_t EntropyClass::available(void)
{
#ifdef ARDUINO_SAM_DUE
return(TRNG->TRNG_ISR & TRNG_ISR_DATRDY);
#else
return(gWDT_pool_count);
#endif
}
// Circular buffer is not needed with the speed of the Arduino Due trng hardware generator
#ifndef ARDUINO_SAM_DUE
// This interrupt service routine is called every time the WDT interrupt is triggered.
// With the default configuration that is approximately once every 16ms, producing
// approximately two 32-bit integer values every second.
//
// The pool is implemented as an 8 value circular buffer
static void isr_hardware_neutral(uint8_t val)
{
gWDT_buffer[gWDT_buffer_position] = val;
gWDT_buffer_position++; // every time the WDT interrupt is triggered
if (gWDT_buffer_position >= gWDT_buffer_SIZE)
{
gWDT_pool_end = (gWDT_pool_start + gWDT_pool_count) % WDT_POOL_SIZE;
// The following code is an implementation of Jenkin's one at a time hash
// This hash function has had preliminary testing to verify that it
// produces reasonably uniform random results when using WDT jitter
// on a variety of Arduino platforms
for(gWDT_loop_counter = 0; gWDT_loop_counter < gWDT_buffer_SIZE; ++gWDT_loop_counter)
{
gWDT_entropy_pool[gWDT_pool_end] += gWDT_buffer[gWDT_loop_counter];
gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 10);
gWDT_entropy_pool[gWDT_pool_end] ^= (gWDT_entropy_pool[gWDT_pool_end] >> 6);
}
gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 3);
gWDT_entropy_pool[gWDT_pool_end] ^= (gWDT_entropy_pool[gWDT_pool_end] >> 11);
gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 15);
gWDT_entropy_pool[gWDT_pool_end] = gWDT_entropy_pool[gWDT_pool_end];
gWDT_buffer_position = 0; // Start collecting the next 32 bytes of Timer 1 counts
if (gWDT_pool_count == WDT_POOL_SIZE) // The entropy pool is full
gWDT_pool_start = (gWDT_pool_start + 1) % WDT_POOL_SIZE;
else // Add another unsigned long (32 bits) to the entropy pool
++gWDT_pool_count;
}
}
#endif
#if defined( __AVR_ATtiny25__ ) || defined( __AVR_ATtiny45__ ) || defined( __AVR_ATtiny85__ )
ISR(WDT_vect)
{
isr_hardware_neutral(TCNT0);
}
#elif defined(__AVR__)
ISR(WDT_vect)
{
isr_hardware_neutral(TCNT1L); // Record the Timer 1 low byte (only one needed)
}
#elif defined(__arm__) && defined(TEENSYDUINO)
void lptmr_isr(void)
{
LPTMR0_CSR = 0b10000100;
LPTMR0_CSR = 0b01000101;
isr_hardware_neutral(SYST_CVR);
}
#endif
// The library implements a single global instance. There is no need, nor will the library
// work properly if multiple instances are created.
EntropyClass Entropy;