mirror of
https://github.com/bitlair/bitlair_doorduino.git
synced 2025-05-13 20:20:08 +02:00
Add inner doors separately
This commit is contained in:
parent
48caa6b8f0
commit
1ecb7a7c9a
15 changed files with 2674 additions and 0 deletions
344
bitlair_doorduino_inner/src/Entropy.cpp
Normal file
344
bitlair_doorduino_inner/src/Entropy.cpp
Normal file
|
@ -0,0 +1,344 @@
|
|||
// Entropy - A entropy (random number) generator for the Arduino
|
||||
// The latest version of this library will always be stored in the following
|
||||
// google code repository:
|
||||
// http://code.google.com/p/avr-hardware-random-number-generation/source/browse/#git%2FEntropy
|
||||
// with more information available on the libraries wiki page
|
||||
// http://code.google.com/p/avr-hardware-random-number-generation/wiki/WikiAVRentropy
|
||||
//
|
||||
// Copyright 2014 by Walter Anderson
|
||||
//
|
||||
// This file is part of Entropy, an Arduino library.
|
||||
// Entropy is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// Entropy is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with Entropy. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include <Arduino.h>
|
||||
#include "Entropy.h"
|
||||
|
||||
const uint8_t WDT_MAX_8INT=0xFF;
|
||||
const uint16_t WDT_MAX_16INT=0xFFFF;
|
||||
const uint32_t WDT_MAX_32INT=0xFFFFFFFF;
|
||||
// Since the Due TRNG is so fast we don't need a circular buffer for it
|
||||
#ifndef ARDUINO_SAM_DUE
|
||||
const uint8_t gWDT_buffer_SIZE=32;
|
||||
const uint8_t WDT_POOL_SIZE=8;
|
||||
uint8_t gWDT_buffer[gWDT_buffer_SIZE];
|
||||
uint8_t gWDT_buffer_position;
|
||||
uint8_t gWDT_loop_counter;
|
||||
volatile uint8_t gWDT_pool_start;
|
||||
volatile uint8_t gWDT_pool_end;
|
||||
volatile uint8_t gWDT_pool_count;
|
||||
volatile uint32_t gWDT_entropy_pool[WDT_POOL_SIZE];
|
||||
#endif
|
||||
|
||||
// This function initializes the global variables needed to implement the circular entropy pool and
|
||||
// the buffer that holds the raw Timer 1 values that are used to create the entropy pool. It then
|
||||
// Initializes the Watch Dog Timer (WDT) to perform an interrupt every 2048 clock cycles, (about
|
||||
// 16 ms) which is as fast as it can be set.
|
||||
void EntropyClass::initialize(void)
|
||||
{
|
||||
#ifndef ARDUINO_SAM_DUE
|
||||
gWDT_buffer_position=0;
|
||||
gWDT_pool_start = 0;
|
||||
gWDT_pool_end = 0;
|
||||
gWDT_pool_count = 0;
|
||||
#endif
|
||||
#if defined(__AVR__)
|
||||
cli(); // Temporarily turn off interrupts, until WDT configured
|
||||
MCUSR = 0; // Use the MCU status register to reset flags for WDR, BOR, EXTR, and POWR
|
||||
_WD_CONTROL_REG |= (1<<_WD_CHANGE_BIT) | (1<<WDE);
|
||||
// WDTCSR |= _BV(WDCE) | _BV(WDE);// WDT control register, This sets the Watchdog Change Enable (WDCE) flag, which is needed to set the
|
||||
_WD_CONTROL_REG = _BV(WDIE); // Watchdog system reset (WDE) enable and the Watchdog interrupt enable (WDIE)
|
||||
sei(); // Turn interupts on
|
||||
#elif defined(ARDUINO_SAM_DUE)
|
||||
pmc_enable_periph_clk(ID_TRNG);
|
||||
TRNG->TRNG_IDR = 0xFFFFFFFF;
|
||||
TRNG->TRNG_CR = TRNG_CR_KEY(0x524e47) | TRNG_CR_ENABLE;
|
||||
#elif defined(__arm__) && defined(TEENSYDUINO)
|
||||
SIM_SCGC5 |= SIM_SCGC5_LPTIMER;
|
||||
LPTMR0_CSR = 0b10000100;
|
||||
LPTMR0_PSR = 0b00000101; // PCS=01 : 1 kHz clock
|
||||
LPTMR0_CMR = 0x0006; // smaller number = faster random numbers...
|
||||
LPTMR0_CSR = 0b01000101;
|
||||
NVIC_ENABLE_IRQ(IRQ_LPTMR);
|
||||
#endif
|
||||
}
|
||||
|
||||
// This function returns a uniformly distributed random integer in the range
|
||||
// of [0,0xFFFFFFFF] as long as some entropy exists in the pool and a 0
|
||||
// otherwise. To ensure a proper random return the available() function
|
||||
// should be called first to ensure that entropy exists.
|
||||
//
|
||||
// The pool is implemented as an 8 value circular buffer
|
||||
uint32_t EntropyClass::random(void)
|
||||
{
|
||||
#ifdef ARDUINO_SAM_DUE
|
||||
while (! (TRNG->TRNG_ISR & TRNG_ISR_DATRDY))
|
||||
;
|
||||
retVal = TRNG->TRNG_ODATA;
|
||||
#else
|
||||
uint8_t waiting;
|
||||
while (gWDT_pool_count < 1)
|
||||
waiting += 1;
|
||||
ATOMIC_BLOCK(ATOMIC_RESTORESTATE)
|
||||
{
|
||||
retVal = gWDT_entropy_pool[gWDT_pool_start];
|
||||
gWDT_pool_start = (gWDT_pool_start + 1) % WDT_POOL_SIZE;
|
||||
--gWDT_pool_count;
|
||||
}
|
||||
#endif
|
||||
return(retVal);
|
||||
}
|
||||
|
||||
// This function returns one byte of a single 32-bit entropy value, while preserving the remaining bytes to
|
||||
// be returned upon successive calls to the method. This makes best use of the available entropy pool when
|
||||
// only bytes size chunks of entropy are needed. Not available to public use since there is a method of using
|
||||
// the default random method for the end-user to achieve the same results. This internal method is for providing
|
||||
// that capability to the random method, shown below
|
||||
uint8_t EntropyClass::random8(void)
|
||||
{
|
||||
static uint8_t byte_position=0;
|
||||
uint8_t retVal8;
|
||||
|
||||
if (byte_position == 0)
|
||||
share_entropy.int32 = random();
|
||||
retVal8 = share_entropy.int8[byte_position++];
|
||||
byte_position = byte_position % 4;
|
||||
return(retVal8);
|
||||
}
|
||||
|
||||
// This function returns one word of a single 32-bit entropy value, while preserving the remaining word to
|
||||
// be returned upon successive calls to the method. This makes best use of the available entropy pool when
|
||||
// only word sized chunks of entropy are needed. Not available to public use since there is a method of using
|
||||
// the default random method for the end-user to achieve the same results. This internal method is for providing
|
||||
// that capability to the random method, shown below
|
||||
uint16_t EntropyClass::random16(void)
|
||||
{
|
||||
static uint8_t word_position=0;
|
||||
uint16_t retVal16;
|
||||
|
||||
if (word_position == 0)
|
||||
share_entropy.int32 = random();
|
||||
retVal16 = share_entropy.int16[word_position++];
|
||||
word_position = word_position % 2;
|
||||
return(retVal16);
|
||||
}
|
||||
|
||||
uint8_t EntropyClass::randomByte(void)
|
||||
{
|
||||
return random8();
|
||||
}
|
||||
|
||||
uint16_t EntropyClass::randomWord(void)
|
||||
{
|
||||
return random16();
|
||||
}
|
||||
|
||||
// This function returns a uniformly distributed integer in the range of
|
||||
// of [0,max). The added complexity of this function is required to ensure
|
||||
// a uniform distribution since the naive modulus max (% max) introduces
|
||||
// bias for all values of max that are not powers of two.
|
||||
//
|
||||
// The loops below are needed, because there is a small and non-uniform chance
|
||||
// That the division below will yield an answer = max, so we just get
|
||||
// the next random value until answer < max. Which prevents the introduction
|
||||
// of bias caused by the division process. This is why we can't use the
|
||||
// simpler modulus operation which introduces significant bias for divisors
|
||||
// that aren't a power of two
|
||||
uint32_t EntropyClass::random(uint32_t max)
|
||||
{
|
||||
uint32_t slice;
|
||||
|
||||
if (max < 2)
|
||||
retVal=0;
|
||||
else
|
||||
{
|
||||
retVal = WDT_MAX_32INT;
|
||||
if (max <= WDT_MAX_8INT) // If only byte values are needed, make best use of entropy
|
||||
{ // by diving the long into four bytes and using individually
|
||||
slice = WDT_MAX_8INT / max;
|
||||
while (retVal >= max)
|
||||
retVal = random8() / slice;
|
||||
}
|
||||
else if (max <= WDT_MAX_16INT) // If only word values are need, make best use of entropy
|
||||
{ // by diving the long into two words and using individually
|
||||
slice = WDT_MAX_16INT / max;
|
||||
while (retVal >= max)
|
||||
retVal = random16() / slice;
|
||||
}
|
||||
else
|
||||
{
|
||||
slice = WDT_MAX_32INT / max;
|
||||
while (retVal >= max)
|
||||
retVal = random() / slice;
|
||||
}
|
||||
}
|
||||
return(retVal);
|
||||
}
|
||||
|
||||
// This function returns a uniformly distributed integer in the range of
|
||||
// of [min,max).
|
||||
uint32_t EntropyClass::random(uint32_t min, uint32_t max)
|
||||
{
|
||||
uint32_t tmp_random, tmax;
|
||||
|
||||
tmax = max - min;
|
||||
if (tmax < 1)
|
||||
retVal=min;
|
||||
else
|
||||
{
|
||||
tmp_random = random(tmax);
|
||||
retVal = min + tmp_random;
|
||||
}
|
||||
return(retVal);
|
||||
}
|
||||
|
||||
// This function returns a uniformly distributed single precision floating point
|
||||
// in the range of [0.0,1.0)
|
||||
float EntropyClass::randomf(void)
|
||||
{
|
||||
float fRetVal;
|
||||
|
||||
// Since c++ doesn't allow bit manipulations of floating point types, we are
|
||||
// using integer type and arrange its bit pattern to follow the IEEE754 bit
|
||||
// pattern for single precision floating point value in the range of 1.0 - 2.0
|
||||
uint32_t tmp_random = random();
|
||||
tmp_random = (tmp_random & 0x007FFFFF) | 0x3F800000;
|
||||
// We then copy that binary representation from the temporary integer to the
|
||||
// returned floating point value
|
||||
memcpy((void *) &fRetVal, (void *) &tmp_random, sizeof(fRetVal));
|
||||
// Now translate the value back to its intended range by subtracting 1.0
|
||||
fRetVal = fRetVal - 1.0;
|
||||
return (fRetVal);
|
||||
}
|
||||
|
||||
// This function returns a uniformly distributed single precision floating point
|
||||
// in the range of [0.0, max)
|
||||
float EntropyClass::randomf(float max)
|
||||
{
|
||||
float fRetVal;
|
||||
fRetVal = randomf() * max;
|
||||
return(fRetVal);
|
||||
}
|
||||
|
||||
// This function returns a uniformly distributed single precision floating point
|
||||
// in the range of [min, max)
|
||||
float EntropyClass::randomf(float min,float max)
|
||||
{
|
||||
float fRetVal;
|
||||
float tmax;
|
||||
tmax = max - min;
|
||||
fRetVal = (randomf() * tmax) + min;
|
||||
return(fRetVal);
|
||||
}
|
||||
|
||||
// This function implements the Marsaglia polar method of converting a uniformly
|
||||
// distributed random numbers to a normaly distributed (bell curve) with the
|
||||
// mean and standard deviation specified. This type of random number is useful
|
||||
// for a variety of purposes, like Monte Carlo simulations.
|
||||
float EntropyClass::rnorm(float mean, float stdDev)
|
||||
{
|
||||
static float spare;
|
||||
static float u1;
|
||||
static float u2;
|
||||
static float s;
|
||||
static bool isSpareReady = false;
|
||||
|
||||
if (isSpareReady)
|
||||
{
|
||||
isSpareReady = false;
|
||||
return ((spare * stdDev) + mean);
|
||||
} else {
|
||||
do {
|
||||
u1 = (randomf() * 2) - 1;
|
||||
u2 = (randomf() * 2) - 1;
|
||||
s = (u1 * u1) + (u2 * u2);
|
||||
} while (s >= 1.0);
|
||||
s = sqrt(-2.0 * log(s) / s);
|
||||
spare = u2 * s;
|
||||
isSpareReady = true;
|
||||
return(mean + (stdDev * u1 * s));
|
||||
}
|
||||
}
|
||||
|
||||
// This function returns a unsigned char (8-bit) with the number of unsigned long values
|
||||
// in the entropy pool
|
||||
uint8_t EntropyClass::available(void)
|
||||
{
|
||||
#ifdef ARDUINO_SAM_DUE
|
||||
return(TRNG->TRNG_ISR & TRNG_ISR_DATRDY);
|
||||
#else
|
||||
return(gWDT_pool_count);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Circular buffer is not needed with the speed of the Arduino Due trng hardware generator
|
||||
#ifndef ARDUINO_SAM_DUE
|
||||
// This interrupt service routine is called every time the WDT interrupt is triggered.
|
||||
// With the default configuration that is approximately once every 16ms, producing
|
||||
// approximately two 32-bit integer values every second.
|
||||
//
|
||||
// The pool is implemented as an 8 value circular buffer
|
||||
static void isr_hardware_neutral(uint8_t val)
|
||||
{
|
||||
gWDT_buffer[gWDT_buffer_position] = val;
|
||||
gWDT_buffer_position++; // every time the WDT interrupt is triggered
|
||||
if (gWDT_buffer_position >= gWDT_buffer_SIZE)
|
||||
{
|
||||
gWDT_pool_end = (gWDT_pool_start + gWDT_pool_count) % WDT_POOL_SIZE;
|
||||
// The following code is an implementation of Jenkin's one at a time hash
|
||||
// This hash function has had preliminary testing to verify that it
|
||||
// produces reasonably uniform random results when using WDT jitter
|
||||
// on a variety of Arduino platforms
|
||||
for(gWDT_loop_counter = 0; gWDT_loop_counter < gWDT_buffer_SIZE; ++gWDT_loop_counter)
|
||||
{
|
||||
gWDT_entropy_pool[gWDT_pool_end] += gWDT_buffer[gWDT_loop_counter];
|
||||
gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 10);
|
||||
gWDT_entropy_pool[gWDT_pool_end] ^= (gWDT_entropy_pool[gWDT_pool_end] >> 6);
|
||||
}
|
||||
gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 3);
|
||||
gWDT_entropy_pool[gWDT_pool_end] ^= (gWDT_entropy_pool[gWDT_pool_end] >> 11);
|
||||
gWDT_entropy_pool[gWDT_pool_end] += (gWDT_entropy_pool[gWDT_pool_end] << 15);
|
||||
gWDT_entropy_pool[gWDT_pool_end] = gWDT_entropy_pool[gWDT_pool_end];
|
||||
gWDT_buffer_position = 0; // Start collecting the next 32 bytes of Timer 1 counts
|
||||
if (gWDT_pool_count == WDT_POOL_SIZE) // The entropy pool is full
|
||||
gWDT_pool_start = (gWDT_pool_start + 1) % WDT_POOL_SIZE;
|
||||
else // Add another unsigned long (32 bits) to the entropy pool
|
||||
++gWDT_pool_count;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined( __AVR_ATtiny25__ ) || defined( __AVR_ATtiny45__ ) || defined( __AVR_ATtiny85__ )
|
||||
ISR(WDT_vect)
|
||||
{
|
||||
isr_hardware_neutral(TCNT0);
|
||||
}
|
||||
|
||||
#elif defined(__AVR__)
|
||||
ISR(WDT_vect)
|
||||
{
|
||||
isr_hardware_neutral(TCNT1L); // Record the Timer 1 low byte (only one needed)
|
||||
}
|
||||
|
||||
#elif defined(__arm__) && defined(TEENSYDUINO)
|
||||
void lptmr_isr(void)
|
||||
{
|
||||
LPTMR0_CSR = 0b10000100;
|
||||
LPTMR0_CSR = 0b01000101;
|
||||
isr_hardware_neutral(SYST_CVR);
|
||||
}
|
||||
#endif
|
||||
|
||||
// The library implements a single global instance. There is no need, nor will the library
|
||||
// work properly if multiple instances are created.
|
||||
EntropyClass Entropy;
|
73
bitlair_doorduino_inner/src/Entropy.h
Normal file
73
bitlair_doorduino_inner/src/Entropy.h
Normal file
|
@ -0,0 +1,73 @@
|
|||
// Entropy - A entropy (random number) generator for the Arduino
|
||||
//
|
||||
// Copyright 2014 by Walter Anderson
|
||||
//
|
||||
// This file is part of Entropy, an Arduino library.
|
||||
// Entropy is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// Entropy is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with Entropy. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#ifndef Entropy_h
|
||||
#define Entropy_h
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
// Separate the ARM Due headers we use
|
||||
#ifdef ARDUINO_SAM_DUE
|
||||
#include <sam.h>
|
||||
#include <sam3xa/include/component/component_trng.h>
|
||||
#endif
|
||||
|
||||
// Teensy required headers
|
||||
#ifdef TEENSYDUINO
|
||||
#include <util/atomic.h>
|
||||
#endif
|
||||
|
||||
// Separate AVR headers from ARM headers
|
||||
#ifdef __AVR__
|
||||
#include <avr/interrupt.h>
|
||||
#include <avr/wdt.h>
|
||||
#include <util/atomic.h>
|
||||
#endif
|
||||
|
||||
const uint32_t WDT_RETURN_BYTE=256;
|
||||
const uint32_t WDT_RETURN_WORD=65536;
|
||||
|
||||
union ENTROPY_LONG_WORD
|
||||
{
|
||||
uint32_t int32;
|
||||
uint16_t int16[2];
|
||||
uint8_t int8[4];
|
||||
};
|
||||
|
||||
class EntropyClass
|
||||
{
|
||||
public:
|
||||
void initialize(void);
|
||||
uint32_t random(void);
|
||||
uint32_t random(uint32_t max);
|
||||
uint32_t random(uint32_t min, uint32_t max);
|
||||
uint8_t randomByte(void);
|
||||
uint16_t randomWord(void);
|
||||
float randomf(void);
|
||||
float randomf(float max);
|
||||
float randomf(float min, float max);
|
||||
float rnorm(float mean, float stdDev);
|
||||
uint8_t available(void);
|
||||
private:
|
||||
ENTROPY_LONG_WORD share_entropy;
|
||||
uint32_t retVal;
|
||||
uint8_t random8(void);
|
||||
uint16_t random16(void);
|
||||
};
|
||||
extern EntropyClass Entropy;
|
||||
#endif
|
563
bitlair_doorduino_inner/src/OneWire.cpp
Normal file
563
bitlair_doorduino_inner/src/OneWire.cpp
Normal file
|
@ -0,0 +1,563 @@
|
|||
/*
|
||||
Copyright (c) 2007, Jim Studt (original old version - many contributors since)
|
||||
|
||||
The latest version of this library may be found at:
|
||||
http://www.pjrc.com/teensy/td_libs_OneWire.html
|
||||
|
||||
OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since
|
||||
January 2010. At the time, it was in need of many bug fixes, but had
|
||||
been abandoned the original author (Jim Studt). None of the known
|
||||
contributors were interested in maintaining OneWire. Paul typically
|
||||
works on OneWire every 6 to 12 months. Patches usually wait that
|
||||
long. If anyone is interested in more actively maintaining OneWire,
|
||||
please contact Paul.
|
||||
|
||||
Version 2.3:
|
||||
Unknonw chip fallback mode, Roger Clark
|
||||
Teensy-LC compatibility, Paul Stoffregen
|
||||
Search bug fix, Love Nystrom
|
||||
|
||||
Version 2.2:
|
||||
Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com
|
||||
Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030
|
||||
Fix DS18B20 example negative temperature
|
||||
Fix DS18B20 example's low res modes, Ken Butcher
|
||||
Improve reset timing, Mark Tillotson
|
||||
Add const qualifiers, Bertrik Sikken
|
||||
Add initial value input to crc16, Bertrik Sikken
|
||||
Add target_search() function, Scott Roberts
|
||||
|
||||
Version 2.1:
|
||||
Arduino 1.0 compatibility, Paul Stoffregen
|
||||
Improve temperature example, Paul Stoffregen
|
||||
DS250x_PROM example, Guillermo Lovato
|
||||
PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com
|
||||
Improvements from Glenn Trewitt:
|
||||
- crc16() now works
|
||||
- check_crc16() does all of calculation/checking work.
|
||||
- Added read_bytes() and write_bytes(), to reduce tedious loops.
|
||||
- Added ds2408 example.
|
||||
Delete very old, out-of-date readme file (info is here)
|
||||
|
||||
Version 2.0: Modifications by Paul Stoffregen, January 2010:
|
||||
http://www.pjrc.com/teensy/td_libs_OneWire.html
|
||||
Search fix from Robin James
|
||||
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
|
||||
Use direct optimized I/O in all cases
|
||||
Disable interrupts during timing critical sections
|
||||
(this solves many random communication errors)
|
||||
Disable interrupts during read-modify-write I/O
|
||||
Reduce RAM consumption by eliminating unnecessary
|
||||
variables and trimming many to 8 bits
|
||||
Optimize both crc8 - table version moved to flash
|
||||
|
||||
Modified to work with larger numbers of devices - avoids loop.
|
||||
Tested in Arduino 11 alpha with 12 sensors.
|
||||
26 Sept 2008 -- Robin James
|
||||
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
|
||||
|
||||
Updated to work with arduino-0008 and to include skip() as of
|
||||
2007/07/06. --RJL20
|
||||
|
||||
Modified to calculate the 8-bit CRC directly, avoiding the need for
|
||||
the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010
|
||||
-- Tom Pollard, Jan 23, 2008
|
||||
|
||||
Jim Studt's original library was modified by Josh Larios.
|
||||
|
||||
Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining
|
||||
a copy of this software and associated documentation files (the
|
||||
"Software"), to deal in the Software without restriction, including
|
||||
without limitation the rights to use, copy, modify, merge, publish,
|
||||
distribute, sublicense, and/or sell copies of the Software, and to
|
||||
permit persons to whom the Software is furnished to do so, subject to
|
||||
the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be
|
||||
included in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||||
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||||
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
||||
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
||||
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
||||
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
Much of the code was inspired by Derek Yerger's code, though I don't
|
||||
think much of that remains. In any event that was..
|
||||
(copyleft) 2006 by Derek Yerger - Free to distribute freely.
|
||||
|
||||
The CRC code was excerpted and inspired by the Dallas Semiconductor
|
||||
sample code bearing this copyright.
|
||||
//---------------------------------------------------------------------------
|
||||
// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a
|
||||
// copy of this software and associated documentation files (the "Software"),
|
||||
// to deal in the Software without restriction, including without limitation
|
||||
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
||||
// and/or sell copies of the Software, and to permit persons to whom the
|
||||
// Software is furnished to do so, subject to the following conditions:
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included
|
||||
// in all copies or substantial portions of the Software.
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
|
||||
// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
||||
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||||
// OTHER DEALINGS IN THE SOFTWARE.
|
||||
//
|
||||
// Except as contained in this notice, the name of Dallas Semiconductor
|
||||
// shall not be used except as stated in the Dallas Semiconductor
|
||||
// Branding Policy.
|
||||
//--------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "OneWire.h"
|
||||
|
||||
|
||||
OneWire::OneWire(uint8_t pin)
|
||||
{
|
||||
pinMode(pin, INPUT);
|
||||
bitmask = PIN_TO_BITMASK(pin);
|
||||
baseReg = PIN_TO_BASEREG(pin);
|
||||
#if ONEWIRE_SEARCH
|
||||
reset_search();
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
// Perform the onewire reset function. We will wait up to 250uS for
|
||||
// the bus to come high, if it doesn't then it is broken or shorted
|
||||
// and we return a 0;
|
||||
//
|
||||
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
|
||||
//
|
||||
uint8_t OneWire::reset(void)
|
||||
{
|
||||
IO_REG_TYPE mask = bitmask;
|
||||
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
|
||||
uint8_t r;
|
||||
uint8_t retries = 125;
|
||||
|
||||
noInterrupts();
|
||||
DIRECT_MODE_INPUT(reg, mask);
|
||||
interrupts();
|
||||
// wait until the wire is high... just in case
|
||||
do {
|
||||
if (--retries == 0) return 0;
|
||||
delayMicroseconds(2);
|
||||
} while ( !DIRECT_READ(reg, mask));
|
||||
|
||||
noInterrupts();
|
||||
DIRECT_WRITE_LOW(reg, mask);
|
||||
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
|
||||
interrupts();
|
||||
delayMicroseconds(480);
|
||||
noInterrupts();
|
||||
DIRECT_MODE_INPUT(reg, mask); // allow it to float
|
||||
delayMicroseconds(70);
|
||||
r = !DIRECT_READ(reg, mask);
|
||||
interrupts();
|
||||
delayMicroseconds(410);
|
||||
return r;
|
||||
}
|
||||
|
||||
//
|
||||
// Write a bit. Port and bit is used to cut lookup time and provide
|
||||
// more certain timing.
|
||||
//
|
||||
void OneWire::write_bit(uint8_t v)
|
||||
{
|
||||
IO_REG_TYPE mask=bitmask;
|
||||
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
|
||||
|
||||
if (v & 1) {
|
||||
noInterrupts();
|
||||
DIRECT_WRITE_LOW(reg, mask);
|
||||
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
|
||||
delayMicroseconds(10);
|
||||
DIRECT_WRITE_HIGH(reg, mask); // drive output high
|
||||
interrupts();
|
||||
delayMicroseconds(55);
|
||||
} else {
|
||||
noInterrupts();
|
||||
DIRECT_WRITE_LOW(reg, mask);
|
||||
DIRECT_MODE_OUTPUT(reg, mask); // drive output low
|
||||
delayMicroseconds(65);
|
||||
DIRECT_WRITE_HIGH(reg, mask); // drive output high
|
||||
interrupts();
|
||||
delayMicroseconds(5);
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Read a bit. Port and bit is used to cut lookup time and provide
|
||||
// more certain timing.
|
||||
//
|
||||
uint8_t OneWire::read_bit(void)
|
||||
{
|
||||
IO_REG_TYPE mask=bitmask;
|
||||
volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
|
||||
uint8_t r;
|
||||
|
||||
noInterrupts();
|
||||
DIRECT_MODE_OUTPUT(reg, mask);
|
||||
DIRECT_WRITE_LOW(reg, mask);
|
||||
delayMicroseconds(3);
|
||||
DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise
|
||||
delayMicroseconds(10);
|
||||
r = DIRECT_READ(reg, mask);
|
||||
interrupts();
|
||||
delayMicroseconds(53);
|
||||
return r;
|
||||
}
|
||||
|
||||
//
|
||||
// Write a byte. The writing code uses the active drivers to raise the
|
||||
// pin high, if you need power after the write (e.g. DS18S20 in
|
||||
// parasite power mode) then set 'power' to 1, otherwise the pin will
|
||||
// go tri-state at the end of the write to avoid heating in a short or
|
||||
// other mishap.
|
||||
//
|
||||
void OneWire::write(uint8_t v, uint8_t power /* = 0 */) {
|
||||
uint8_t bitMask;
|
||||
|
||||
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
|
||||
OneWire::write_bit( (bitMask & v)?1:0);
|
||||
}
|
||||
if ( !power) {
|
||||
noInterrupts();
|
||||
DIRECT_MODE_INPUT(baseReg, bitmask);
|
||||
DIRECT_WRITE_LOW(baseReg, bitmask);
|
||||
interrupts();
|
||||
}
|
||||
}
|
||||
|
||||
void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) {
|
||||
for (uint16_t i = 0 ; i < count ; i++)
|
||||
write(buf[i]);
|
||||
if (!power) {
|
||||
noInterrupts();
|
||||
DIRECT_MODE_INPUT(baseReg, bitmask);
|
||||
DIRECT_WRITE_LOW(baseReg, bitmask);
|
||||
interrupts();
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Read a byte
|
||||
//
|
||||
uint8_t OneWire::read() {
|
||||
uint8_t bitMask;
|
||||
uint8_t r = 0;
|
||||
|
||||
for (bitMask = 0x01; bitMask; bitMask <<= 1) {
|
||||
if ( OneWire::read_bit()) r |= bitMask;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
void OneWire::read_bytes(uint8_t *buf, uint16_t count) {
|
||||
for (uint16_t i = 0 ; i < count ; i++)
|
||||
buf[i] = read();
|
||||
}
|
||||
|
||||
//
|
||||
// Do a ROM select
|
||||
//
|
||||
void OneWire::select(const uint8_t rom[8])
|
||||
{
|
||||
uint8_t i;
|
||||
|
||||
write(0x55); // Choose ROM
|
||||
|
||||
for (i = 0; i < 8; i++) write(rom[i]);
|
||||
}
|
||||
|
||||
//
|
||||
// Do a ROM skip
|
||||
//
|
||||
void OneWire::skip()
|
||||
{
|
||||
write(0xCC); // Skip ROM
|
||||
}
|
||||
|
||||
void OneWire::depower()
|
||||
{
|
||||
noInterrupts();
|
||||
DIRECT_MODE_INPUT(baseReg, bitmask);
|
||||
interrupts();
|
||||
}
|
||||
|
||||
#if ONEWIRE_SEARCH
|
||||
|
||||
//
|
||||
// You need to use this function to start a search again from the beginning.
|
||||
// You do not need to do it for the first search, though you could.
|
||||
//
|
||||
void OneWire::reset_search()
|
||||
{
|
||||
// reset the search state
|
||||
LastDiscrepancy = 0;
|
||||
LastDeviceFlag = FALSE;
|
||||
LastFamilyDiscrepancy = 0;
|
||||
for(int i = 7; ; i--) {
|
||||
ROM_NO[i] = 0;
|
||||
if ( i == 0) break;
|
||||
}
|
||||
}
|
||||
|
||||
// Setup the search to find the device type 'family_code' on the next call
|
||||
// to search(*newAddr) if it is present.
|
||||
//
|
||||
void OneWire::target_search(uint8_t family_code)
|
||||
{
|
||||
// set the search state to find SearchFamily type devices
|
||||
ROM_NO[0] = family_code;
|
||||
for (uint8_t i = 1; i < 8; i++)
|
||||
ROM_NO[i] = 0;
|
||||
LastDiscrepancy = 64;
|
||||
LastFamilyDiscrepancy = 0;
|
||||
LastDeviceFlag = FALSE;
|
||||
}
|
||||
|
||||
//
|
||||
// Perform a search. If this function returns a '1' then it has
|
||||
// enumerated the next device and you may retrieve the ROM from the
|
||||
// OneWire::address variable. If there are no devices, no further
|
||||
// devices, or something horrible happens in the middle of the
|
||||
// enumeration then a 0 is returned. If a new device is found then
|
||||
// its address is copied to newAddr. Use OneWire::reset_search() to
|
||||
// start over.
|
||||
//
|
||||
// --- Replaced by the one from the Dallas Semiconductor web site ---
|
||||
//--------------------------------------------------------------------------
|
||||
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
|
||||
// search state.
|
||||
// Return TRUE : device found, ROM number in ROM_NO buffer
|
||||
// FALSE : device not found, end of search
|
||||
//
|
||||
uint8_t OneWire::search(uint8_t *newAddr)
|
||||
{
|
||||
uint8_t id_bit_number;
|
||||
uint8_t last_zero, rom_byte_number, search_result;
|
||||
uint8_t id_bit, cmp_id_bit;
|
||||
|
||||
unsigned char rom_byte_mask, search_direction;
|
||||
|
||||
// initialize for search
|
||||
id_bit_number = 1;
|
||||
last_zero = 0;
|
||||
rom_byte_number = 0;
|
||||
rom_byte_mask = 1;
|
||||
search_result = 0;
|
||||
|
||||
// if the last call was not the last one
|
||||
if (!LastDeviceFlag)
|
||||
{
|
||||
// 1-Wire reset
|
||||
if (!reset())
|
||||
{
|
||||
// reset the search
|
||||
LastDiscrepancy = 0;
|
||||
LastDeviceFlag = FALSE;
|
||||
LastFamilyDiscrepancy = 0;
|
||||
return FALSE;
|
||||
}
|
||||
|
||||
// issue the search command
|
||||
write(0xF0);
|
||||
|
||||
// loop to do the search
|
||||
do
|
||||
{
|
||||
// read a bit and its complement
|
||||
id_bit = read_bit();
|
||||
cmp_id_bit = read_bit();
|
||||
|
||||
// check for no devices on 1-wire
|
||||
if ((id_bit == 1) && (cmp_id_bit == 1))
|
||||
break;
|
||||
else
|
||||
{
|
||||
// all devices coupled have 0 or 1
|
||||
if (id_bit != cmp_id_bit)
|
||||
search_direction = id_bit; // bit write value for search
|
||||
else
|
||||
{
|
||||
// if this discrepancy if before the Last Discrepancy
|
||||
// on a previous next then pick the same as last time
|
||||
if (id_bit_number < LastDiscrepancy)
|
||||
search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
|
||||
else
|
||||
// if equal to last pick 1, if not then pick 0
|
||||
search_direction = (id_bit_number == LastDiscrepancy);
|
||||
|
||||
// if 0 was picked then record its position in LastZero
|
||||
if (search_direction == 0)
|
||||
{
|
||||
last_zero = id_bit_number;
|
||||
|
||||
// check for Last discrepancy in family
|
||||
if (last_zero < 9)
|
||||
LastFamilyDiscrepancy = last_zero;
|
||||
}
|
||||
}
|
||||
|
||||
// set or clear the bit in the ROM byte rom_byte_number
|
||||
// with mask rom_byte_mask
|
||||
if (search_direction == 1)
|
||||
ROM_NO[rom_byte_number] |= rom_byte_mask;
|
||||
else
|
||||
ROM_NO[rom_byte_number] &= ~rom_byte_mask;
|
||||
|
||||
// serial number search direction write bit
|
||||
write_bit(search_direction);
|
||||
|
||||
// increment the byte counter id_bit_number
|
||||
// and shift the mask rom_byte_mask
|
||||
id_bit_number++;
|
||||
rom_byte_mask <<= 1;
|
||||
|
||||
// if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
|
||||
if (rom_byte_mask == 0)
|
||||
{
|
||||
rom_byte_number++;
|
||||
rom_byte_mask = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
|
||||
|
||||
// if the search was successful then
|
||||
if (!(id_bit_number < 65))
|
||||
{
|
||||
// search successful so set LastDiscrepancy,LastDeviceFlag,search_result
|
||||
LastDiscrepancy = last_zero;
|
||||
|
||||
// check for last device
|
||||
if (LastDiscrepancy == 0)
|
||||
LastDeviceFlag = TRUE;
|
||||
|
||||
search_result = TRUE;
|
||||
}
|
||||
}
|
||||
|
||||
// if no device found then reset counters so next 'search' will be like a first
|
||||
if (!search_result || !ROM_NO[0])
|
||||
{
|
||||
LastDiscrepancy = 0;
|
||||
LastDeviceFlag = FALSE;
|
||||
LastFamilyDiscrepancy = 0;
|
||||
search_result = FALSE;
|
||||
} else {
|
||||
for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
|
||||
}
|
||||
return search_result;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if ONEWIRE_CRC
|
||||
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
|
||||
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
|
||||
//
|
||||
|
||||
#if ONEWIRE_CRC8_TABLE
|
||||
// This table comes from Dallas sample code where it is freely reusable,
|
||||
// though Copyright (C) 2000 Dallas Semiconductor Corporation
|
||||
static const uint8_t PROGMEM dscrc_table[] = {
|
||||
0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
|
||||
157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
|
||||
35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
|
||||
190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
|
||||
70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
|
||||
219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
|
||||
101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
|
||||
248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
|
||||
140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
|
||||
17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
|
||||
175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
|
||||
50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
|
||||
202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
|
||||
87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
|
||||
233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
|
||||
116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};
|
||||
|
||||
//
|
||||
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
|
||||
// and the registers. (note: this might better be done without to
|
||||
// table, it would probably be smaller and certainly fast enough
|
||||
// compared to all those delayMicrosecond() calls. But I got
|
||||
// confused, so I use this table from the examples.)
|
||||
//
|
||||
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
|
||||
{
|
||||
uint8_t crc = 0;
|
||||
|
||||
while (len--) {
|
||||
crc = pgm_read_byte(dscrc_table + (crc ^ *addr++));
|
||||
}
|
||||
return crc;
|
||||
}
|
||||
#else
|
||||
//
|
||||
// Compute a Dallas Semiconductor 8 bit CRC directly.
|
||||
// this is much slower, but much smaller, than the lookup table.
|
||||
//
|
||||
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
|
||||
{
|
||||
uint8_t crc = 0;
|
||||
|
||||
while (len--) {
|
||||
uint8_t inbyte = *addr++;
|
||||
for (uint8_t i = 8; i; i--) {
|
||||
uint8_t mix = (crc ^ inbyte) & 0x01;
|
||||
crc >>= 1;
|
||||
if (mix) crc ^= 0x8C;
|
||||
inbyte >>= 1;
|
||||
}
|
||||
}
|
||||
return crc;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ONEWIRE_CRC16
|
||||
bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc)
|
||||
{
|
||||
crc = ~crc16(input, len, crc);
|
||||
return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
|
||||
}
|
||||
|
||||
uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc)
|
||||
{
|
||||
static const uint8_t oddparity[16] =
|
||||
{ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
|
||||
|
||||
for (uint16_t i = 0 ; i < len ; i++) {
|
||||
// Even though we're just copying a byte from the input,
|
||||
// we'll be doing 16-bit computation with it.
|
||||
uint16_t cdata = input[i];
|
||||
cdata = (cdata ^ crc) & 0xff;
|
||||
crc >>= 8;
|
||||
|
||||
if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
|
||||
crc ^= 0xC001;
|
||||
|
||||
cdata <<= 6;
|
||||
crc ^= cdata;
|
||||
cdata <<= 1;
|
||||
crc ^= cdata;
|
||||
}
|
||||
return crc;
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
250
bitlair_doorduino_inner/src/OneWire.h
Normal file
250
bitlair_doorduino_inner/src/OneWire.h
Normal file
|
@ -0,0 +1,250 @@
|
|||
#ifndef OneWire_h
|
||||
#define OneWire_h
|
||||
|
||||
#include <inttypes.h>
|
||||
|
||||
#if ARDUINO >= 100
|
||||
#include "Arduino.h" // for delayMicroseconds, digitalPinToBitMask, etc
|
||||
#else
|
||||
#include "WProgram.h" // for delayMicroseconds
|
||||
#include "pins_arduino.h" // for digitalPinToBitMask, etc
|
||||
#endif
|
||||
|
||||
// You can exclude certain features from OneWire. In theory, this
|
||||
// might save some space. In practice, the compiler automatically
|
||||
// removes unused code (technically, the linker, using -fdata-sections
|
||||
// and -ffunction-sections when compiling, and Wl,--gc-sections
|
||||
// when linking), so most of these will not result in any code size
|
||||
// reduction. Well, unless you try to use the missing features
|
||||
// and redesign your program to not need them! ONEWIRE_CRC8_TABLE
|
||||
// is the exception, because it selects a fast but large algorithm
|
||||
// or a small but slow algorithm.
|
||||
|
||||
// you can exclude onewire_search by defining that to 0
|
||||
#ifndef ONEWIRE_SEARCH
|
||||
#define ONEWIRE_SEARCH 1
|
||||
#endif
|
||||
|
||||
// You can exclude CRC checks altogether by defining this to 0
|
||||
#ifndef ONEWIRE_CRC
|
||||
#define ONEWIRE_CRC 1
|
||||
#endif
|
||||
|
||||
// Select the table-lookup method of computing the 8-bit CRC
|
||||
// by setting this to 1. The lookup table enlarges code size by
|
||||
// about 250 bytes. It does NOT consume RAM (but did in very
|
||||
// old versions of OneWire). If you disable this, a slower
|
||||
// but very compact algorithm is used.
|
||||
#ifndef ONEWIRE_CRC8_TABLE
|
||||
#define ONEWIRE_CRC8_TABLE 1
|
||||
#endif
|
||||
|
||||
// You can allow 16-bit CRC checks by defining this to 1
|
||||
// (Note that ONEWIRE_CRC must also be 1.)
|
||||
#ifndef ONEWIRE_CRC16
|
||||
#define ONEWIRE_CRC16 1
|
||||
#endif
|
||||
|
||||
#define FALSE 0
|
||||
#define TRUE 1
|
||||
|
||||
// Platform specific I/O definitions
|
||||
|
||||
#if defined(__AVR__)
|
||||
#define PIN_TO_BASEREG(pin) (portInputRegister(digitalPinToPort(pin)))
|
||||
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
|
||||
#define IO_REG_TYPE uint8_t
|
||||
#define IO_REG_ASM asm("r30")
|
||||
#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0)
|
||||
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) &= ~(mask))
|
||||
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+1)) |= (mask))
|
||||
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+2)) &= ~(mask))
|
||||
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+2)) |= (mask))
|
||||
|
||||
#elif defined(__MK20DX128__) || defined(__MK20DX256__)
|
||||
#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
|
||||
#define PIN_TO_BITMASK(pin) (1)
|
||||
#define IO_REG_TYPE uint8_t
|
||||
#define IO_REG_ASM
|
||||
#define DIRECT_READ(base, mask) (*((base)+512))
|
||||
#define DIRECT_MODE_INPUT(base, mask) (*((base)+640) = 0)
|
||||
#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+640) = 1)
|
||||
#define DIRECT_WRITE_LOW(base, mask) (*((base)+256) = 1)
|
||||
#define DIRECT_WRITE_HIGH(base, mask) (*((base)+128) = 1)
|
||||
|
||||
#elif defined(__MKL26Z64__)
|
||||
#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
|
||||
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
|
||||
#define IO_REG_TYPE uint8_t
|
||||
#define IO_REG_ASM
|
||||
#define DIRECT_READ(base, mask) ((*((base)+16) & (mask)) ? 1 : 0)
|
||||
#define DIRECT_MODE_INPUT(base, mask) (*((base)+20) &= ~(mask))
|
||||
#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+20) |= (mask))
|
||||
#define DIRECT_WRITE_LOW(base, mask) (*((base)+8) = (mask))
|
||||
#define DIRECT_WRITE_HIGH(base, mask) (*((base)+4) = (mask))
|
||||
|
||||
#elif defined(__SAM3X8E__)
|
||||
// Arduino 1.5.1 may have a bug in delayMicroseconds() on Arduino Due.
|
||||
// http://arduino.cc/forum/index.php/topic,141030.msg1076268.html#msg1076268
|
||||
// If you have trouble with OneWire on Arduino Due, please check the
|
||||
// status of delayMicroseconds() before reporting a bug in OneWire!
|
||||
#define PIN_TO_BASEREG(pin) (&(digitalPinToPort(pin)->PIO_PER))
|
||||
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
|
||||
#define IO_REG_TYPE uint32_t
|
||||
#define IO_REG_ASM
|
||||
#define DIRECT_READ(base, mask) (((*((base)+15)) & (mask)) ? 1 : 0)
|
||||
#define DIRECT_MODE_INPUT(base, mask) ((*((base)+5)) = (mask))
|
||||
#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+4)) = (mask))
|
||||
#define DIRECT_WRITE_LOW(base, mask) ((*((base)+13)) = (mask))
|
||||
#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+12)) = (mask))
|
||||
#ifndef PROGMEM
|
||||
#define PROGMEM
|
||||
#endif
|
||||
#ifndef pgm_read_byte
|
||||
#define pgm_read_byte(addr) (*(const uint8_t *)(addr))
|
||||
#endif
|
||||
|
||||
#elif defined(__PIC32MX__)
|
||||
#define PIN_TO_BASEREG(pin) (portModeRegister(digitalPinToPort(pin)))
|
||||
#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
|
||||
#define IO_REG_TYPE uint32_t
|
||||
#define IO_REG_ASM
|
||||
#define DIRECT_READ(base, mask) (((*(base+4)) & (mask)) ? 1 : 0) //PORTX + 0x10
|
||||
#define DIRECT_MODE_INPUT(base, mask) ((*(base+2)) = (mask)) //TRISXSET + 0x08
|
||||
#define DIRECT_MODE_OUTPUT(base, mask) ((*(base+1)) = (mask)) //TRISXCLR + 0x04
|
||||
#define DIRECT_WRITE_LOW(base, mask) ((*(base+8+1)) = (mask)) //LATXCLR + 0x24
|
||||
#define DIRECT_WRITE_HIGH(base, mask) ((*(base+8+2)) = (mask)) //LATXSET + 0x28
|
||||
|
||||
#else
|
||||
#define PIN_TO_BASEREG(pin) (0)
|
||||
#define PIN_TO_BITMASK(pin) (pin)
|
||||
#define IO_REG_TYPE unsigned int
|
||||
#define IO_REG_ASM
|
||||
#define DIRECT_READ(base, pin) digitalRead(pin)
|
||||
#define DIRECT_WRITE_LOW(base, pin) digitalWrite(pin, LOW)
|
||||
#define DIRECT_WRITE_HIGH(base, pin) digitalWrite(pin, HIGH)
|
||||
#define DIRECT_MODE_INPUT(base, pin) pinMode(pin,INPUT)
|
||||
#define DIRECT_MODE_OUTPUT(base, pin) pinMode(pin,OUTPUT)
|
||||
#warning "OneWire. Fallback mode. Using API calls for pinMode,digitalRead and digitalWrite. Operation of this library is not guaranteed on this architecture."
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
class OneWire
|
||||
{
|
||||
private:
|
||||
IO_REG_TYPE bitmask;
|
||||
volatile IO_REG_TYPE *baseReg;
|
||||
|
||||
#if ONEWIRE_SEARCH
|
||||
// global search state
|
||||
unsigned char ROM_NO[8];
|
||||
uint8_t LastDiscrepancy;
|
||||
uint8_t LastFamilyDiscrepancy;
|
||||
uint8_t LastDeviceFlag;
|
||||
#endif
|
||||
|
||||
public:
|
||||
OneWire( uint8_t pin);
|
||||
|
||||
// Perform a 1-Wire reset cycle. Returns 1 if a device responds
|
||||
// with a presence pulse. Returns 0 if there is no device or the
|
||||
// bus is shorted or otherwise held low for more than 250uS
|
||||
uint8_t reset(void);
|
||||
|
||||
// Issue a 1-Wire rom select command, you do the reset first.
|
||||
void select(const uint8_t rom[8]);
|
||||
|
||||
// Issue a 1-Wire rom skip command, to address all on bus.
|
||||
void skip(void);
|
||||
|
||||
// Write a byte. If 'power' is one then the wire is held high at
|
||||
// the end for parasitically powered devices. You are responsible
|
||||
// for eventually depowering it by calling depower() or doing
|
||||
// another read or write.
|
||||
void write(uint8_t v, uint8_t power = 0);
|
||||
|
||||
void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0);
|
||||
|
||||
// Read a byte.
|
||||
uint8_t read(void);
|
||||
|
||||
void read_bytes(uint8_t *buf, uint16_t count);
|
||||
|
||||
// Write a bit. The bus is always left powered at the end, see
|
||||
// note in write() about that.
|
||||
void write_bit(uint8_t v);
|
||||
|
||||
// Read a bit.
|
||||
uint8_t read_bit(void);
|
||||
|
||||
// Stop forcing power onto the bus. You only need to do this if
|
||||
// you used the 'power' flag to write() or used a write_bit() call
|
||||
// and aren't about to do another read or write. You would rather
|
||||
// not leave this powered if you don't have to, just in case
|
||||
// someone shorts your bus.
|
||||
void depower(void);
|
||||
|
||||
#if ONEWIRE_SEARCH
|
||||
// Clear the search state so that if will start from the beginning again.
|
||||
void reset_search();
|
||||
|
||||
// Setup the search to find the device type 'family_code' on the next call
|
||||
// to search(*newAddr) if it is present.
|
||||
void target_search(uint8_t family_code);
|
||||
|
||||
// Look for the next device. Returns 1 if a new address has been
|
||||
// returned. A zero might mean that the bus is shorted, there are
|
||||
// no devices, or you have already retrieved all of them. It
|
||||
// might be a good idea to check the CRC to make sure you didn't
|
||||
// get garbage. The order is deterministic. You will always get
|
||||
// the same devices in the same order.
|
||||
uint8_t search(uint8_t *newAddr);
|
||||
#endif
|
||||
|
||||
#if ONEWIRE_CRC
|
||||
// Compute a Dallas Semiconductor 8 bit CRC, these are used in the
|
||||
// ROM and scratchpad registers.
|
||||
static uint8_t crc8(const uint8_t *addr, uint8_t len);
|
||||
|
||||
#if ONEWIRE_CRC16
|
||||
// Compute the 1-Wire CRC16 and compare it against the received CRC.
|
||||
// Example usage (reading a DS2408):
|
||||
// // Put everything in a buffer so we can compute the CRC easily.
|
||||
// uint8_t buf[13];
|
||||
// buf[0] = 0xF0; // Read PIO Registers
|
||||
// buf[1] = 0x88; // LSB address
|
||||
// buf[2] = 0x00; // MSB address
|
||||
// WriteBytes(net, buf, 3); // Write 3 cmd bytes
|
||||
// ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
|
||||
// if (!CheckCRC16(buf, 11, &buf[11])) {
|
||||
// // Handle error.
|
||||
// }
|
||||
//
|
||||
// @param input - Array of bytes to checksum.
|
||||
// @param len - How many bytes to use.
|
||||
// @param inverted_crc - The two CRC16 bytes in the received data.
|
||||
// This should just point into the received data,
|
||||
// *not* at a 16-bit integer.
|
||||
// @param crc - The crc starting value (optional)
|
||||
// @return True, iff the CRC matches.
|
||||
static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0);
|
||||
|
||||
// Compute a Dallas Semiconductor 16 bit CRC. This is required to check
|
||||
// the integrity of data received from many 1-Wire devices. Note that the
|
||||
// CRC computed here is *not* what you'll get from the 1-Wire network,
|
||||
// for two reasons:
|
||||
// 1) The CRC is transmitted bitwise inverted.
|
||||
// 2) Depending on the endian-ness of your processor, the binary
|
||||
// representation of the two-byte return value may have a different
|
||||
// byte order than the two bytes you get from 1-Wire.
|
||||
// @param input - Array of bytes to checksum.
|
||||
// @param len - How many bytes to use.
|
||||
// @param crc - The crc starting value (optional)
|
||||
// @return The CRC16, as defined by Dallas Semiconductor.
|
||||
static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0);
|
||||
#endif
|
||||
#endif
|
||||
};
|
||||
|
||||
#endif
|
325
bitlair_doorduino_inner/src/ds1961.cpp
Normal file
325
bitlair_doorduino_inner/src/ds1961.cpp
Normal file
|
@ -0,0 +1,325 @@
|
|||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "OneWire.h"
|
||||
#include "ds1961.h"
|
||||
|
||||
// commands used in the DS1961 standard
|
||||
#define CMD_WRITE_SCRATCHPAD 0x0F
|
||||
#define CMD_COMPUTE_NEXT_SECRET 0x33
|
||||
#define CMD_COPY_SCRATCHPAD 0x55
|
||||
#define CMD_LOAD_FIRST_SECRET 0x5A
|
||||
#define CMD_REFRESH_SCRATCHPAD 0xA3
|
||||
#define CMD_READ_AUTH_PAGE 0xA5
|
||||
#define CMD_READ_SCRATCHPAD 0xAA
|
||||
#define CMD_READ_MEMORY 0xF0
|
||||
|
||||
// memory ranges
|
||||
#define MEM_DATA_PAGE_0 0x00
|
||||
#define MEM_DATA_PAGE_1 0x20
|
||||
#define MEM_DATA_PAGE_2 0x40
|
||||
#define MEM_DATA_PAGE_3 0x60
|
||||
#define MEM_SECRET 0x80
|
||||
#define MEM_IDENTITY 0x90
|
||||
|
||||
// timing (ms)
|
||||
#define T_CSHA 2 // actually 1.5
|
||||
#define T_PROG 10
|
||||
|
||||
|
||||
DS1961::DS1961(OneWire *oneWire)
|
||||
{
|
||||
ow = oneWire;
|
||||
}
|
||||
|
||||
static bool ResetAndSelect(OneWire *ow, const uint8_t id[8])
|
||||
{
|
||||
if (!ow->reset()) {
|
||||
return false;
|
||||
}
|
||||
ow->select((uint8_t *) id);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool WriteScratchPad(OneWire *ow, const uint8_t id[8], uint16_t addr, const uint8_t data[8])
|
||||
{
|
||||
uint8_t buf[11];
|
||||
uint8_t crc[2];
|
||||
int len = 0;
|
||||
|
||||
// reset and select
|
||||
if (!ResetAndSelect(ow, id)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// perform write scratchpad command
|
||||
buf[len++] = CMD_WRITE_SCRATCHPAD;
|
||||
buf[len++] = (addr >> 0) & 0xFF; // 2 byte target address
|
||||
buf[len++] = (addr >> 8) & 0xFF; // 2 byte target address
|
||||
memcpy(buf + len, data, 8);
|
||||
len += 8;
|
||||
ow->write_bytes(buf, len);
|
||||
ow->read_bytes(crc, 2);
|
||||
|
||||
return ow->check_crc16(buf, len, crc);
|
||||
}
|
||||
|
||||
static bool RefreshScratchPad(OneWire *ow, const uint8_t id[8], uint16_t addr, const uint8_t data[8])
|
||||
{
|
||||
uint8_t buf[11];
|
||||
uint8_t crc[2];
|
||||
int len = 0;
|
||||
|
||||
// reset and select
|
||||
if (!ResetAndSelect(ow, id)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// perform refresh scratchpad command
|
||||
buf[len++] = CMD_REFRESH_SCRATCHPAD;
|
||||
buf[len++] = (addr >> 0) & 0xFF; // 2 byte target address
|
||||
buf[len++] = (addr >> 8) & 0xFF; // 2 byte target address
|
||||
memcpy(buf + len, data, 8);
|
||||
len += 8;
|
||||
ow->write_bytes(buf, len);
|
||||
ow->read_bytes(crc, 2);
|
||||
|
||||
return ow->check_crc16(buf, len, crc);
|
||||
}
|
||||
|
||||
static bool ReadScratchPad(OneWire *ow, const uint8_t id[8], uint16_t *addr, uint8_t *es, uint8_t data[8])
|
||||
{
|
||||
uint8_t buf[12];
|
||||
uint8_t crc[2];
|
||||
int len = 0;
|
||||
|
||||
// reset and select
|
||||
if (!ResetAndSelect(ow, id)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// send read scratchpad command
|
||||
buf[len++] = CMD_READ_SCRATCHPAD;
|
||||
ow->write_bytes(buf, len);
|
||||
|
||||
// get TA0/1 and ES
|
||||
ow->read_bytes(buf + len, 3);
|
||||
len += 3;
|
||||
*addr = (buf[2] << 8) | buf[1];
|
||||
*es = buf[3];
|
||||
|
||||
// get data
|
||||
ow->read_bytes(buf + len, 8);
|
||||
len += 8;
|
||||
memcpy(data, buf + 4, 8);
|
||||
|
||||
// check CRC
|
||||
ow->read_bytes(crc, 2);
|
||||
return ow->check_crc16(buf, len, crc);
|
||||
}
|
||||
|
||||
static bool CopyScratchPad(OneWire *ow, const uint8_t id[8], uint16_t addr, uint8_t es, const uint8_t mac[20])
|
||||
{
|
||||
uint8_t buf[4];
|
||||
int len = 0;
|
||||
uint8_t status;
|
||||
|
||||
// reset and select
|
||||
if (!ResetAndSelect(ow, id)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// send copy scratchpad command + arguments
|
||||
buf[len++] = CMD_COPY_SCRATCHPAD;
|
||||
buf[len++] = (addr >> 0) & 0xFF; // 2 byte target address
|
||||
buf[len++] = (addr >> 8) & 0xFF; // 2 byte target address
|
||||
buf[len++] = es; // es
|
||||
ow->write_bytes(buf, len, 1); // write and keep powered
|
||||
|
||||
// wait while MAC is calculated
|
||||
delay(T_CSHA);
|
||||
|
||||
// send MAC
|
||||
ow->write_bytes(mac, 20);
|
||||
|
||||
// wait 10 ms
|
||||
delay(T_PROG);
|
||||
ow->depower();
|
||||
|
||||
// check final status byte
|
||||
status = ow->read();
|
||||
return (status == 0xAA);
|
||||
}
|
||||
|
||||
static bool ReadAuthPage(OneWire *ow, const uint8_t id[8], uint16_t addr, uint8_t data[32], uint8_t mac[20])
|
||||
{
|
||||
uint8_t buf[36];
|
||||
uint8_t crc[2];
|
||||
uint8_t status;
|
||||
int len = 0;
|
||||
|
||||
// reset and select
|
||||
if (!ResetAndSelect(ow, id)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// send command
|
||||
buf[len++] = CMD_READ_AUTH_PAGE;
|
||||
buf[len++] = (addr >> 0) & 0xFF;
|
||||
buf[len++] = (addr >> 8) & 0xFF;
|
||||
ow->write_bytes(buf, len);
|
||||
|
||||
// read data part + 0xFF
|
||||
ow->read_bytes(buf + len, 33);
|
||||
len += 33;
|
||||
if (buf[35] != 0xFF) {
|
||||
return false;
|
||||
}
|
||||
ow->read_bytes(crc, 2);
|
||||
if (!ow->check_crc16(buf, len, crc)) {
|
||||
return false;
|
||||
}
|
||||
memcpy(data, buf + 3, 32);
|
||||
|
||||
// read mac part
|
||||
delay(T_CSHA);
|
||||
ow->read_bytes(mac, 20);
|
||||
ow->read_bytes(crc, 2);
|
||||
if (!ow->check_crc16(mac, 20, crc)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// check final status byte
|
||||
status = ow->read();
|
||||
return (status == 0xAA);
|
||||
}
|
||||
|
||||
static bool LoadFirstSecret(OneWire *ow, const uint8_t id[8], uint16_t addr, uint8_t es)
|
||||
{
|
||||
uint8_t status;
|
||||
|
||||
// reset and select
|
||||
if (!ResetAndSelect(ow, id)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// write auth code
|
||||
ow->write(CMD_LOAD_FIRST_SECRET);
|
||||
ow->write((addr >> 0) & 0xFF);
|
||||
ow->write((addr >> 8) & 0xFF);
|
||||
ow->write(es, 1);
|
||||
delay(T_PROG);
|
||||
ow->depower();
|
||||
|
||||
status = ow->read();
|
||||
return (status == 0xAA);
|
||||
}
|
||||
|
||||
static bool ReadMemory(OneWire *ow, const uint8_t id[8], int addr, int len, uint8_t data[])
|
||||
{
|
||||
// reset and select
|
||||
if (!ResetAndSelect(ow, id)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// write command/addr
|
||||
ow->write(CMD_READ_MEMORY);
|
||||
ow->write((addr >> 0) & 0xFF);
|
||||
ow->write((addr >> 8) & 0xFF);
|
||||
|
||||
// read data
|
||||
ow->read_bytes(data, len);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool DS1961::ReadAuthWithChallenge(const uint8_t id[8], uint16_t addr, const uint8_t challenge[3], uint8_t data[32], uint8_t mac[20])
|
||||
{
|
||||
uint8_t scratchpad[8];
|
||||
|
||||
// put the challenge in the scratchpad
|
||||
memset(scratchpad, 0, sizeof(scratchpad));
|
||||
memcpy(scratchpad + 4, challenge, 3);
|
||||
if (!WriteScratchPad(ow, id, addr, scratchpad)) {
|
||||
// Serial.println("WriteScratchPad failed!");
|
||||
return false;
|
||||
}
|
||||
|
||||
// perform the authenticated read
|
||||
if (!ReadAuthPage(ow, id, addr, data, mac)) {
|
||||
// Serial.println("ReadAuthPage failed!");
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool DS1961::WriteSecret(const uint8_t id[8], const uint8_t secret[8])
|
||||
{
|
||||
uint16_t addr;
|
||||
uint8_t es;
|
||||
uint8_t data[8];
|
||||
|
||||
// write secret to scratch pad
|
||||
if (!WriteScratchPad(ow, id, MEM_SECRET, secret)) {
|
||||
// Serial.println("WriteScratchPad failed!");
|
||||
return false;
|
||||
}
|
||||
|
||||
// read scratch pad for auth code
|
||||
if (!ReadScratchPad(ow, id, &addr, &es, data)) {
|
||||
// Serial.println("ReadScratchPad failed!");
|
||||
return false;
|
||||
}
|
||||
if (!LoadFirstSecret(ow, id, addr, es)) {
|
||||
// Serial.println("LoadFirstSecret failed!");
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Writes 8 bytes of data to specified address
|
||||
*/
|
||||
bool DS1961::WriteData(const uint8_t id[8], int addr, const uint8_t data[8], const uint8_t mac[20])
|
||||
{
|
||||
uint8_t spad[8];
|
||||
uint16_t ad;
|
||||
uint8_t es;
|
||||
|
||||
// write data into scratchpad
|
||||
if (!WriteScratchPad(ow, id, addr, data)) {
|
||||
Serial.println("WriteScratchPad failed!");
|
||||
return false;
|
||||
}
|
||||
|
||||
// read scratch pad for auth code
|
||||
if (!ReadScratchPad(ow, id, &ad, &es, spad)) {
|
||||
Serial.println("ReadScratchPad failed!");
|
||||
return false;
|
||||
}
|
||||
|
||||
// copy scratchpad to EEPROM
|
||||
if (!CopyScratchPad(ow, id, ad, es, mac)) {
|
||||
Serial.println("CopyScratchPad failed!");
|
||||
return false;
|
||||
}
|
||||
|
||||
// refresh scratchpad
|
||||
if (!RefreshScratchPad(ow, id, addr, data)) {
|
||||
Serial.println("RefreshScratchPad failed!");
|
||||
return false;
|
||||
}
|
||||
|
||||
// re-write with load first secret
|
||||
if (!LoadFirstSecret(ow, id, addr, es)) {
|
||||
Serial.println("LoadFirstSecret failed!");
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
23
bitlair_doorduino_inner/src/ds1961.h
Normal file
23
bitlair_doorduino_inner/src/ds1961.h
Normal file
|
@ -0,0 +1,23 @@
|
|||
#ifndef _DS1961_H_
|
||||
#define _DS1961_H_
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "OneWire.h"
|
||||
|
||||
class DS1961 {
|
||||
|
||||
public:
|
||||
DS1961(OneWire *oneWire);
|
||||
|
||||
bool WriteSecret(const uint8_t id[8], const uint8_t secret[8]);
|
||||
bool ReadAuthWithChallenge(const uint8_t id[8], uint16_t addr, const uint8_t challenge[3], uint8_t data[32], uint8_t mac[20]);
|
||||
bool WriteData(const uint8_t id[8], int addr, const uint8_t data[8], const uint8_t mac[20]);
|
||||
|
||||
private:
|
||||
OneWire *ow;
|
||||
|
||||
};
|
||||
|
||||
#endif /* _DS1961_H_ */
|
741
bitlair_doorduino_inner/src/main.cpp
Normal file
741
bitlair_doorduino_inner/src/main.cpp
Normal file
|
@ -0,0 +1,741 @@
|
|||
#include "OneWire.h"
|
||||
#include "ds1961.h"
|
||||
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
// #include <EEPROM.h>
|
||||
#include "Entropy.h"
|
||||
#include "sha1.h"
|
||||
#include "Wire.h"
|
||||
|
||||
|
||||
#include <Arduino.h>
|
||||
// Motor steps per revolution. Most steppers are 200 steps or 1.8 degrees/step
|
||||
#define MOTOR_STEPS 2
|
||||
#define RPM 60
|
||||
#define DIR A6
|
||||
// #define STEP A7
|
||||
#define STEP 9
|
||||
#include "A4988.h"
|
||||
A4988 stepper(MOTOR_STEPS, DIR, STEP);
|
||||
|
||||
#define INPUT_SOLENOID 7
|
||||
#define INPUT_HORN 3
|
||||
#define PIN_LEDSOLENOID 6
|
||||
#define PIN_LEDHORN 5
|
||||
bool StateSolenoid = false;
|
||||
bool StateHorn = false;
|
||||
uint32_t SolenoidStartTime;
|
||||
bool StateSolenoidInactive = false;
|
||||
uint32_t SolenoidInactiveStartTime;
|
||||
|
||||
|
||||
|
||||
#define PIN_DOORPOWER A1
|
||||
#define PIN_SOLENOID A3
|
||||
#define PIN_HORN A2
|
||||
#define PIN_OPEN 13
|
||||
#define PIN_CLOSE A0
|
||||
|
||||
#define PIN_1WIRE 8
|
||||
#define PIN_LEDGREEN 10
|
||||
#define PIN_LEDRED 11
|
||||
|
||||
#define PIN_MAINS_POWER 2
|
||||
|
||||
#define CMD_BUFSIZE 64
|
||||
#define CMD_TIMEOUT 10000 //command timeout in milliseconds
|
||||
|
||||
#define SECRETSIZE 8
|
||||
#define ADDRSIZE 8
|
||||
#define STORAGESIZE (SECRETSIZE + ADDRSIZE)
|
||||
#define EEPROMDEVICEADDRESS 0x50
|
||||
#define EEPROMSIZE 2048
|
||||
#define SHA1SIZE 20
|
||||
|
||||
#define IBUTTON_SEARCH_TIMEOUT 60000 //timeout searching for ibutton
|
||||
|
||||
#define LEDState_Off 0
|
||||
#define LEDState_Reading 1
|
||||
#define LEDState_Authorized 2
|
||||
#define LEDState_Busy 3
|
||||
|
||||
#define SPACEState_Open 1
|
||||
#define SPACEState_Closed 0
|
||||
|
||||
#define htons(x) ( ((x)<<8) | (((x)>>8)&0xFF) )
|
||||
#define ntohs(x) htons(x)
|
||||
|
||||
#define htonl(x) ( ((x)<<24 & 0xFF000000UL) | \
|
||||
((x)<< 8 & 0x00FF0000UL) | \
|
||||
((x)>> 8 & 0x0000FF00UL) | \
|
||||
((x)>>24 & 0x000000FFUL) )
|
||||
#define ntohl(x) htonl(x)
|
||||
|
||||
OneWire ds(PIN_1WIRE);
|
||||
DS1961 ibutton(&ds);
|
||||
|
||||
bool HasMainsPower();
|
||||
|
||||
int Serialprintf (const char* fmt, ...) __attribute__ ((format (printf, 1, 2)));
|
||||
|
||||
int Serialprintf (const char* fmt, ...)
|
||||
{
|
||||
char buf[256];
|
||||
|
||||
va_list args;
|
||||
va_start(args, fmt);
|
||||
vsnprintf(buf, sizeof(buf), fmt, args);
|
||||
va_end(args);
|
||||
|
||||
Serial.print(buf);
|
||||
}
|
||||
|
||||
uint8_t g_ledstate = LEDState_Off;
|
||||
uint32_t g_ledtimestart;
|
||||
bool g_fade;
|
||||
bool g_lockopen;
|
||||
bool g_spacestate = SPACEState_Closed;
|
||||
|
||||
#define LED_PERIOD 1024
|
||||
|
||||
void ProcessLEDs()
|
||||
{
|
||||
if (g_ledstate == LEDState_Off)
|
||||
{
|
||||
analogWrite(PIN_LEDGREEN, 0);
|
||||
analogWrite(PIN_LEDRED, 0);
|
||||
}
|
||||
else if (g_ledstate == LEDState_Reading)
|
||||
{
|
||||
uint32_t timesincesetting = millis() + LED_PERIOD / 2 - g_ledtimestart;
|
||||
uint32_t ledtime = timesincesetting % LED_PERIOD;
|
||||
uint32_t ledval;
|
||||
if (ledtime < LED_PERIOD / 2)
|
||||
ledval = ledtime;
|
||||
else
|
||||
ledval = (LED_PERIOD - 1) - ledtime;
|
||||
|
||||
ledval = (ledval * ledval) / LED_PERIOD;
|
||||
if (!HasMainsPower())
|
||||
ledval = (ledval + 5) / 10;
|
||||
|
||||
if (g_lockopen)
|
||||
{
|
||||
analogWrite(PIN_LEDGREEN, ledval);
|
||||
analogWrite(PIN_LEDRED, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
analogWrite(PIN_LEDGREEN, 0);
|
||||
analogWrite(PIN_LEDRED, ledval);
|
||||
}
|
||||
}
|
||||
else if (g_ledstate == LEDState_Authorized)
|
||||
{
|
||||
if (g_lockopen)
|
||||
{
|
||||
analogWrite(PIN_LEDGREEN, 255);
|
||||
analogWrite(PIN_LEDRED, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
analogWrite(PIN_LEDGREEN, 0);
|
||||
analogWrite(PIN_LEDRED, 255);
|
||||
}
|
||||
}
|
||||
else if (g_ledstate == LEDState_Busy)
|
||||
{
|
||||
analogWrite(PIN_LEDGREEN, 255);
|
||||
analogWrite(PIN_LEDRED, 255);
|
||||
}
|
||||
}
|
||||
|
||||
void SetLEDState(uint8_t ledstate)
|
||||
{
|
||||
if (ledstate == LEDState_Reading && g_ledstate != LEDState_Reading)
|
||||
{
|
||||
g_ledtimestart = millis();
|
||||
g_fade = true;
|
||||
}
|
||||
|
||||
g_ledstate = ledstate;
|
||||
|
||||
ProcessLEDs();
|
||||
}
|
||||
|
||||
void DelayLEDs(uint32_t delayms)
|
||||
{
|
||||
uint32_t now = millis();
|
||||
while (millis() - now < delayms)
|
||||
ProcessLEDs();
|
||||
}
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(115200);
|
||||
Serial.println("DEBUG: Board started");
|
||||
Wire.begin();
|
||||
|
||||
stepper.begin(RPM);
|
||||
stepper.enable();
|
||||
stepper.setMicrostep(1); // Set microstep mode to 1:1
|
||||
|
||||
pinMode(INPUT_SOLENOID, INPUT_PULLUP);
|
||||
pinMode(INPUT_HORN, INPUT_PULLUP);
|
||||
pinMode(PIN_LEDSOLENOID, OUTPUT);
|
||||
pinMode(PIN_LEDHORN, OUTPUT);
|
||||
pinMode(PIN_DOORPOWER, OUTPUT);
|
||||
pinMode(PIN_SOLENOID, OUTPUT);
|
||||
pinMode(PIN_OPEN, OUTPUT);
|
||||
pinMode(PIN_CLOSE, OUTPUT);
|
||||
pinMode(PIN_HORN, OUTPUT);
|
||||
|
||||
pinMode(PIN_LEDGREEN, OUTPUT);
|
||||
pinMode(PIN_LEDRED, OUTPUT);
|
||||
pinMode(PIN_MAINS_POWER, INPUT);
|
||||
|
||||
digitalWrite(PIN_OPEN, LOW);
|
||||
digitalWrite(PIN_CLOSE, LOW);
|
||||
digitalWrite(PIN_DOORPOWER, LOW);
|
||||
digitalWrite(PIN_HORN, LOW);
|
||||
digitalWrite(PIN_SOLENOID, LOW);
|
||||
|
||||
SetLEDState(LEDState_Off);
|
||||
|
||||
Entropy.initialize();
|
||||
}
|
||||
|
||||
void writeEEPROM(unsigned int eeaddress, byte data )
|
||||
{
|
||||
Wire.beginTransmission(EEPROMDEVICEADDRESS);
|
||||
Wire.write((int)(eeaddress >> 8)); // MSB
|
||||
Wire.write((int)(eeaddress & 0xFF)); // LSB
|
||||
Wire.write(data);
|
||||
Wire.endTransmission();
|
||||
|
||||
delay(5);
|
||||
}
|
||||
|
||||
byte readEEPROM(unsigned int eeaddress )
|
||||
{
|
||||
byte rdata = 0xFF;
|
||||
|
||||
Wire.beginTransmission(EEPROMDEVICEADDRESS);
|
||||
Wire.write((int)(eeaddress >> 8)); // MSB
|
||||
Wire.write((int)(eeaddress & 0xFF)); // LSB
|
||||
Wire.endTransmission();
|
||||
|
||||
Wire.requestFrom(EEPROMDEVICEADDRESS,1);
|
||||
|
||||
if (Wire.available()) rdata = Wire.read();
|
||||
|
||||
return rdata;
|
||||
}
|
||||
|
||||
void AddButton(uint8_t* addr, uint8_t* secret)
|
||||
{
|
||||
for (uint16_t i = 0; i < EEPROMSIZE / STORAGESIZE; i++)
|
||||
{
|
||||
bool emptyslot = true;
|
||||
uint16_t startaddr = i * STORAGESIZE;
|
||||
for (uint16_t j = 0; j < ADDRSIZE; j++)
|
||||
{
|
||||
uint8_t eeprombyte = readEEPROM(startaddr + j);
|
||||
if (eeprombyte != 0xFF && eeprombyte != addr[j])
|
||||
{
|
||||
emptyslot = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (emptyslot)
|
||||
{
|
||||
for (uint16_t j = 0; j < ADDRSIZE; j++)
|
||||
writeEEPROM(startaddr + j, addr[j]);
|
||||
|
||||
for (uint16_t j = 0; j < SECRETSIZE; j++)
|
||||
writeEEPROM(startaddr + j + ADDRSIZE, secret[j]);
|
||||
|
||||
Serialprintf("DEBUG: stored button in slot %i\n", i);
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
Serial.println("ERROR: no room in eeprom to store button");
|
||||
}
|
||||
|
||||
void RemoveButton(uint8_t* addr)
|
||||
{
|
||||
for (uint16_t i = 0; i < EEPROMSIZE / STORAGESIZE; i++)
|
||||
{
|
||||
uint16_t startaddr = i * STORAGESIZE;
|
||||
bool sameaddr = true;
|
||||
for (uint16_t j = 0; j < ADDRSIZE; j++)
|
||||
{
|
||||
uint8_t eeprombyte = readEEPROM(startaddr + j);
|
||||
if (eeprombyte != addr[j])
|
||||
{
|
||||
sameaddr = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!sameaddr)
|
||||
continue;
|
||||
|
||||
Serialprintf("DEBUG: erasing slot %i\n", i);
|
||||
|
||||
for (uint16_t j = 0; j < STORAGESIZE; j++)
|
||||
writeEEPROM(startaddr + j, 0xFF);
|
||||
}
|
||||
}
|
||||
|
||||
bool GetButtonSecret(uint8_t* addr, uint8_t* secret)
|
||||
{
|
||||
for (uint16_t i = 0; i < EEPROMSIZE / STORAGESIZE; i++)
|
||||
{
|
||||
uint16_t startaddr = i * STORAGESIZE;
|
||||
bool sameaddr = true;
|
||||
bool isempty = true;
|
||||
for (uint16_t j = 0; j < ADDRSIZE; j++)
|
||||
{
|
||||
uint8_t eeprombyte = readEEPROM(startaddr + j);
|
||||
if (isempty && eeprombyte != 0xFF)
|
||||
isempty = false;
|
||||
|
||||
if (eeprombyte != addr[j])
|
||||
{
|
||||
sameaddr = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (isempty)
|
||||
continue;
|
||||
|
||||
if (sameaddr)
|
||||
{
|
||||
Serialprintf("DEBUG: getting secret from slot %i\n", i);
|
||||
|
||||
for (uint16_t j = 0; j < SECRETSIZE; j++)
|
||||
secret[j] = readEEPROM(startaddr + j + ADDRSIZE);
|
||||
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
Serial.println("DEBUG: can't find secret for button");
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void ListButtons()
|
||||
{
|
||||
Serial.println("button list start");
|
||||
|
||||
for (uint16_t i = 0; i < EEPROMSIZE / STORAGESIZE; i++)
|
||||
{
|
||||
uint16_t startaddr = i * STORAGESIZE;
|
||||
uint8_t buttonid[ADDRSIZE];
|
||||
bool isempty = true;
|
||||
for (uint16_t j = 0; j < ADDRSIZE; j++)
|
||||
{
|
||||
uint8_t eeprombyte = readEEPROM(startaddr + j);
|
||||
if (isempty && eeprombyte != 0xFF)
|
||||
isempty = false;
|
||||
|
||||
buttonid[j] = eeprombyte;
|
||||
}
|
||||
|
||||
if (isempty)
|
||||
continue;
|
||||
|
||||
Serialprintf("button: ");
|
||||
for (uint16_t j = 0; j < ADDRSIZE; j++)
|
||||
Serialprintf("%02x", buttonid[j]);
|
||||
Serialprintf("\n");
|
||||
}
|
||||
}
|
||||
|
||||
#define RANDOMDELAY_MIN 50
|
||||
#define RANDOMDELAY_MAX 200
|
||||
|
||||
bool AuthenticateButton(uint8_t* addr)
|
||||
{
|
||||
uint8_t secret[SECRETSIZE];
|
||||
if (!GetButtonSecret(addr, secret))
|
||||
return false;
|
||||
|
||||
uint8_t mac_from_ibutton[SHA1SIZE];
|
||||
uint8_t data[32];
|
||||
uint8_t nonce[3];
|
||||
|
||||
for (uint8_t i = 0; i < sizeof(nonce); i++)
|
||||
nonce[i] = Entropy.randomByte();
|
||||
|
||||
if (!ibutton.ReadAuthWithChallenge(addr, 0, nonce, data, mac_from_ibutton))
|
||||
return false;
|
||||
|
||||
sha1::sha1nfo sha1data = {};
|
||||
sha1::sha1_init(&sha1data);
|
||||
sha1::sha1_write(&sha1data, (const char*)secret, 4);
|
||||
sha1::sha1_write(&sha1data, (const char*)data, sizeof(data));
|
||||
sha1::sha1_writebyte(&sha1data, 0xff);
|
||||
sha1::sha1_writebyte(&sha1data, 0xff);
|
||||
sha1::sha1_writebyte(&sha1data, 0xff);
|
||||
sha1::sha1_writebyte(&sha1data, 0xff);
|
||||
sha1::sha1_writebyte(&sha1data, 0x40);
|
||||
sha1::sha1_write(&sha1data, (const char*)addr, ADDRSIZE - 1);
|
||||
sha1::sha1_write(&sha1data, (const char*)secret + 4, 4);
|
||||
sha1::sha1_write(&sha1data, (const char*)nonce, sizeof(nonce));
|
||||
|
||||
uint8_t* sha_computed = sha1::sha1_result(&sha1data);
|
||||
|
||||
uint8_t mac_computed[SHA1SIZE];
|
||||
((uint32_t*)mac_computed)[0] = htonl(ntohl(*(uint32_t *)sha_computed) - 0x67452301);
|
||||
((uint32_t*)mac_computed)[1] = htonl(ntohl(*(uint32_t *)(sha_computed+4)) - 0xefcdab89);
|
||||
((uint32_t*)mac_computed)[2] = htonl(ntohl(*(uint32_t *)(sha_computed+8)) - 0x98badcfe);
|
||||
((uint32_t*)mac_computed)[3] = htonl(ntohl(*(uint32_t *)(sha_computed+12)) - 0x10325476);
|
||||
((uint32_t*)mac_computed)[4] = htonl(ntohl(*(uint32_t *)(sha_computed+16)) - 0xc3d2e1f0);
|
||||
|
||||
//this check should always take the same amount of time, to prevent a timing attack
|
||||
bool macvalid = true;
|
||||
for (uint8_t i = 0; i < SHA1SIZE; i++)
|
||||
{
|
||||
if (mac_from_ibutton[i] != mac_computed[SHA1SIZE - 1 - i])
|
||||
macvalid = false;
|
||||
}
|
||||
|
||||
//add a random delay
|
||||
delayMicroseconds(Entropy.random(RANDOMDELAY_MIN, RANDOMDELAY_MAX));
|
||||
|
||||
return macvalid;
|
||||
}
|
||||
|
||||
bool ReadCMD(char* cmdbuf, uint8_t* cmdbuffill)
|
||||
{
|
||||
uint32_t cmdstarttime = millis();
|
||||
*cmdbuffill = 0;
|
||||
for(;;)
|
||||
{
|
||||
if (Serial.available())
|
||||
{
|
||||
char input = Serial.read();
|
||||
if (input == '\n')
|
||||
{
|
||||
cmdbuf[*cmdbuffill] = 0;
|
||||
return true;
|
||||
}
|
||||
else if (*cmdbuffill < CMD_BUFSIZE - 1)
|
||||
{
|
||||
cmdbuf[*cmdbuffill] = input;
|
||||
(*cmdbuffill)++;
|
||||
}
|
||||
}
|
||||
|
||||
if (millis() - cmdstarttime >= CMD_TIMEOUT)
|
||||
{
|
||||
Serial.println("ERROR: timeout receiving command");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t NextWordPos(char* cmdbuf, uint8_t cmdbuffill, uint8_t index)
|
||||
{
|
||||
bool foundwhitespace = false;
|
||||
for (uint8_t i = index; i < cmdbuffill; i++)
|
||||
{
|
||||
if (!foundwhitespace)
|
||||
{
|
||||
if (cmdbuf[i] == ' ')
|
||||
foundwhitespace = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (cmdbuf[i] != ' ')
|
||||
{
|
||||
return i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool GetHexWordFromCMD(char* cmdbuf, uint8_t cmdbuffill, uint8_t* wordpos, uint8_t* wordbuf, uint8_t wordsize, char* wordname)
|
||||
{
|
||||
*wordpos = NextWordPos(cmdbuf, cmdbuffill, *wordpos);
|
||||
|
||||
if (*wordpos == 0)
|
||||
{
|
||||
Serialprintf("ERROR: no %s found in command\n", wordname);
|
||||
return false;
|
||||
}
|
||||
else if (cmdbuffill - *wordpos < wordsize * 2)
|
||||
{
|
||||
Serialprintf("ERROR: %s is too short\n", wordname);
|
||||
return false;
|
||||
}
|
||||
|
||||
for (uint8_t i = 0; i < wordsize; i++)
|
||||
{
|
||||
if ((cmdbuf[*wordpos + i * 2] == ' ') || (cmdbuf[*wordpos + i * 2 + 1] == ' '))
|
||||
{
|
||||
Serialprintf("ERROR: %s is too short\n", wordname);
|
||||
return false;
|
||||
}
|
||||
|
||||
int numread = sscanf(cmdbuf + *wordpos + i * 2, "%2hhx", wordbuf + i);
|
||||
if (numread != 1)
|
||||
{
|
||||
Serialprintf("ERROR: %s is invalid\n", wordname);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#define CMD_ADD_BUTTON "add_button"
|
||||
#define CMD_REMOVE_BUTTON "remove_button"
|
||||
#define CMD_LIST_BUTTONS "list_buttons"
|
||||
#define CMD_SPACESTATE "spacestate"
|
||||
|
||||
void ParseCMD(char* cmdbuf, uint8_t cmdbuffill)
|
||||
{
|
||||
Serial.print("DEBUG: Received cmd: ");
|
||||
Serial.println(cmdbuf);
|
||||
|
||||
bool isadd = strncmp(CMD_ADD_BUTTON, cmdbuf, strlen(CMD_ADD_BUTTON)) == 0;
|
||||
bool isremove = strncmp(CMD_REMOVE_BUTTON, cmdbuf, strlen(CMD_REMOVE_BUTTON)) == 0;
|
||||
bool islist = strncmp(CMD_LIST_BUTTONS, cmdbuf, strlen(CMD_LIST_BUTTONS)) == 0;
|
||||
bool isspacestate = strncmp(CMD_SPACESTATE, cmdbuf, strlen(CMD_SPACESTATE)) == 0;
|
||||
|
||||
if (isadd || isremove)
|
||||
{
|
||||
uint8_t wordpos = 0;
|
||||
uint8_t addr[ADDRSIZE];
|
||||
if (!GetHexWordFromCMD(cmdbuf, cmdbuffill, &wordpos, addr, ADDRSIZE, "address"))
|
||||
return;
|
||||
|
||||
Serial.print("DEBUG: Received address ");
|
||||
for (uint8_t i = 0; i < ADDRSIZE; i++)
|
||||
Serialprintf("%02x", addr[i]);
|
||||
Serial.print("\n");
|
||||
|
||||
bool addrvalid = false;
|
||||
for (uint8_t i = 0; i < ADDRSIZE; i++)
|
||||
{
|
||||
if (addr[i] != 0xFF)
|
||||
{
|
||||
addrvalid = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!addrvalid)
|
||||
{
|
||||
Serial.println("ERROR: address FFFFFFFFFFFFFFFF is invalid");
|
||||
return;
|
||||
}
|
||||
|
||||
if (isadd)
|
||||
{
|
||||
uint8_t secret[SECRETSIZE];
|
||||
if (!GetHexWordFromCMD(cmdbuf, cmdbuffill, &wordpos, secret, SECRETSIZE, "secret"))
|
||||
return;
|
||||
|
||||
Serial.print("DEBUG: Received secret ");
|
||||
for (uint8_t i = 0; i < ADDRSIZE; i++)
|
||||
Serialprintf("%02x", secret[i]);
|
||||
Serial.print("\n");
|
||||
|
||||
AddButton(addr, secret);
|
||||
}
|
||||
else
|
||||
{
|
||||
Serialprintf("DEBUG: removing button\n");
|
||||
RemoveButton(addr);
|
||||
}
|
||||
}
|
||||
else if (islist)
|
||||
{
|
||||
ListButtons();
|
||||
}
|
||||
else if (isspacestate)
|
||||
{
|
||||
uint8_t wordpos = 0;
|
||||
wordpos = NextWordPos(cmdbuf, cmdbuffill, wordpos);
|
||||
bool isopen = strncmp("open", &cmdbuf[wordpos], strlen("open")) == 0;
|
||||
bool isclosed = strncmp("closed", &cmdbuf[wordpos], strlen("closed")) == 0;
|
||||
if(isopen || isclosed){
|
||||
Serial.print("Old state: ");
|
||||
Serial.println(g_spacestate == SPACEState_Open ? "open" : "closed");
|
||||
g_spacestate = isopen ? SPACEState_Open : SPACEState_Closed;
|
||||
}
|
||||
Serial.print("Current state: ");
|
||||
Serial.println(g_spacestate == SPACEState_Open ? "open" : "closed");
|
||||
}
|
||||
else
|
||||
{
|
||||
Serial.println("Unknown command");
|
||||
}
|
||||
}
|
||||
|
||||
#define TOGGLE_TIME 2500
|
||||
#define BUTTON_TIME 250
|
||||
|
||||
void ToggleLock()
|
||||
{
|
||||
if (g_lockopen)
|
||||
{
|
||||
g_lockopen = false;
|
||||
Serial.println("closing lock");
|
||||
digitalWrite(PIN_DOORPOWER, HIGH);
|
||||
digitalWrite(PIN_CLOSE, HIGH);
|
||||
DelayLEDs(BUTTON_TIME);
|
||||
DelayLEDs(TOGGLE_TIME - BUTTON_TIME);
|
||||
}
|
||||
else
|
||||
{
|
||||
g_lockopen = true;
|
||||
Serial.println("opening lock");
|
||||
digitalWrite(PIN_DOORPOWER, HIGH);
|
||||
digitalWrite(PIN_OPEN, HIGH);
|
||||
DelayLEDs(BUTTON_TIME);
|
||||
DelayLEDs(TOGGLE_TIME - BUTTON_TIME);
|
||||
}
|
||||
|
||||
DelayLEDs(4000);
|
||||
digitalWrite(PIN_OPEN, LOW);
|
||||
digitalWrite(PIN_CLOSE, LOW);
|
||||
digitalWrite(PIN_DOORPOWER, LOW);
|
||||
|
||||
Serial.println("finished lock action");
|
||||
}
|
||||
|
||||
bool HasMainsPower()
|
||||
{
|
||||
return digitalRead(PIN_MAINS_POWER) == HIGH;
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
uint8_t addr[ADDRSIZE];
|
||||
uint32_t deniedcount = 0;
|
||||
|
||||
for(;;)
|
||||
{
|
||||
if (Serial.available())
|
||||
{
|
||||
uint8_t input = Serial.read();
|
||||
if (input == '\n')
|
||||
{
|
||||
SetLEDState(LEDState_Busy);
|
||||
Serial.println("ready");
|
||||
|
||||
char cmdbuf[CMD_BUFSIZE] = {};
|
||||
uint8_t cmdbuffill;
|
||||
if (ReadCMD(cmdbuf, &cmdbuffill))
|
||||
ParseCMD(cmdbuf, cmdbuffill);
|
||||
}
|
||||
}
|
||||
|
||||
SetLEDState(LEDState_Reading);
|
||||
|
||||
ds.reset_search();
|
||||
if (ds.search(addr) && OneWire::crc8(addr, 7) == addr[7])
|
||||
{
|
||||
Serial.print("DEBUG: Found iButton with address: ");
|
||||
for (uint8_t i = 0; i < sizeof(addr); i++)
|
||||
Serialprintf("%02x", addr[i]);
|
||||
Serial.print('\n');
|
||||
|
||||
if (AuthenticateButton(addr))
|
||||
{
|
||||
SetLEDState(LEDState_Authorized);
|
||||
Serial.print("iButton authenticated\n");
|
||||
g_lockopen = true;
|
||||
// DelayLEDs(5000);
|
||||
// ToggleLock();
|
||||
deniedcount = 0;
|
||||
|
||||
// if(g_lockopen == true){
|
||||
StateSolenoid = true;
|
||||
SolenoidStartTime = millis();
|
||||
Serial.print("Solenoid activated\n");
|
||||
digitalWrite(PIN_SOLENOID, HIGH);
|
||||
// stepper.move(MOTOR_STEPS*(RPM/60)*10);
|
||||
// }
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
deniedcount++;
|
||||
if (deniedcount == 3)
|
||||
{
|
||||
Serial.print("iButton not authenticated\n");
|
||||
SetLEDState(LEDState_Busy);
|
||||
//disabled because sounding the horn resets the arduino
|
||||
//digitalWrite(PIN_HORN, HIGH);
|
||||
//DelayLEDs(500);
|
||||
//digitalWrite(PIN_HORN, LOW);
|
||||
deniedcount = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
deniedcount = 0;
|
||||
}
|
||||
|
||||
ProcessLEDs();
|
||||
|
||||
if(g_spacestate == SPACEState_Open){
|
||||
digitalWrite(PIN_LEDSOLENOID, HIGH);
|
||||
}else{
|
||||
digitalWrite(PIN_LEDSOLENOID, LOW);
|
||||
}
|
||||
digitalWrite(PIN_LEDHORN, HIGH);
|
||||
if (digitalRead(INPUT_SOLENOID) == LOW) {
|
||||
if(g_spacestate == SPACEState_Open){
|
||||
if(StateSolenoid == false){
|
||||
StateSolenoid = true;
|
||||
SolenoidStartTime = millis();
|
||||
Serial.print("Solenoid activated\n");
|
||||
digitalWrite(PIN_SOLENOID, HIGH);
|
||||
g_lockopen = true;
|
||||
// stepper.move(MOTOR_STEPS*(RPM/60)*10);
|
||||
}
|
||||
}else{
|
||||
if(StateSolenoidInactive == false){
|
||||
StateSolenoidInactive = true;
|
||||
SolenoidInactiveStartTime = millis();
|
||||
Serial.print("Spacestate closed, Solenoid button not active\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
if(StateSolenoid == true && ((millis() - SolenoidStartTime) > (5*1000)) ){
|
||||
digitalWrite(PIN_SOLENOID, LOW);
|
||||
StateSolenoid = false;
|
||||
g_lockopen = false;
|
||||
}
|
||||
if(StateSolenoidInactive == true && ((millis() - SolenoidInactiveStartTime) > (1*1000)) ){
|
||||
StateSolenoidInactive = false;
|
||||
}
|
||||
if (digitalRead(INPUT_HORN) == LOW) {
|
||||
if(StateHorn == false){
|
||||
StateHorn = true;
|
||||
Serial.print("Horn activated\n");
|
||||
digitalWrite(PIN_HORN, HIGH);
|
||||
}
|
||||
}else{
|
||||
StateHorn = false;
|
||||
digitalWrite(PIN_HORN, LOW);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
156
bitlair_doorduino_inner/src/sha1.cpp
Normal file
156
bitlair_doorduino_inner/src/sha1.cpp
Normal file
|
@ -0,0 +1,156 @@
|
|||
#include "sha1.h"
|
||||
#include <string.h>
|
||||
|
||||
namespace sha1
|
||||
{
|
||||
/* code */
|
||||
#define SHA1_K0 0x5a827999
|
||||
#define SHA1_K20 0x6ed9eba1
|
||||
#define SHA1_K40 0x8f1bbcdc
|
||||
#define SHA1_K60 0xca62c1d6
|
||||
|
||||
void sha1_init(sha1nfo *s) {
|
||||
s->state[0] = 0x67452301;
|
||||
s->state[1] = 0xefcdab89;
|
||||
s->state[2] = 0x98badcfe;
|
||||
s->state[3] = 0x10325476;
|
||||
s->state[4] = 0xc3d2e1f0;
|
||||
s->byteCount = 0;
|
||||
s->bufferOffset = 0;
|
||||
}
|
||||
|
||||
uint32_t sha1_rol32(uint32_t number, uint8_t bits) {
|
||||
return ((number << bits) | (number >> (32-bits)));
|
||||
}
|
||||
|
||||
void sha1_hashBlock(sha1nfo *s) {
|
||||
uint8_t i;
|
||||
uint32_t a,b,c,d,e,t;
|
||||
|
||||
a=s->state[0];
|
||||
b=s->state[1];
|
||||
c=s->state[2];
|
||||
d=s->state[3];
|
||||
e=s->state[4];
|
||||
for (i=0; i<80; i++) {
|
||||
if (i>=16) {
|
||||
t = s->buffer[(i+13)&15] ^ s->buffer[(i+8)&15] ^ s->buffer[(i+2)&15] ^ s->buffer[i&15];
|
||||
s->buffer[i&15] = sha1_rol32(t,1);
|
||||
}
|
||||
if (i<20) {
|
||||
t = (d ^ (b & (c ^ d))) + SHA1_K0;
|
||||
} else if (i<40) {
|
||||
t = (b ^ c ^ d) + SHA1_K20;
|
||||
} else if (i<60) {
|
||||
t = ((b & c) | (d & (b | c))) + SHA1_K40;
|
||||
} else {
|
||||
t = (b ^ c ^ d) + SHA1_K60;
|
||||
}
|
||||
t+=sha1_rol32(a,5) + e + s->buffer[i&15];
|
||||
e=d;
|
||||
d=c;
|
||||
c=sha1_rol32(b,30);
|
||||
b=a;
|
||||
a=t;
|
||||
}
|
||||
s->state[0] += a;
|
||||
s->state[1] += b;
|
||||
s->state[2] += c;
|
||||
s->state[3] += d;
|
||||
s->state[4] += e;
|
||||
}
|
||||
|
||||
void sha1_addUncounted(sha1nfo *s, uint8_t data) {
|
||||
uint8_t * const b = (uint8_t*) s->buffer;
|
||||
#ifdef SHA_BIG_ENDIAN
|
||||
b[s->bufferOffset] = data;
|
||||
#else
|
||||
b[s->bufferOffset ^ 3] = data;
|
||||
#endif
|
||||
s->bufferOffset++;
|
||||
if (s->bufferOffset == BLOCK_LENGTH) {
|
||||
sha1_hashBlock(s);
|
||||
s->bufferOffset = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void sha1_writebyte(sha1nfo *s, uint8_t data) {
|
||||
++s->byteCount;
|
||||
sha1_addUncounted(s, data);
|
||||
}
|
||||
|
||||
void sha1_write(sha1nfo *s, const char *data, size_t len) {
|
||||
for (;len--;) sha1_writebyte(s, (uint8_t) *data++);
|
||||
}
|
||||
|
||||
void sha1_pad(sha1nfo *s) {
|
||||
// Implement SHA-1 padding (fips180-2 §5.1.1)
|
||||
|
||||
// Pad with 0x80 followed by 0x00 until the end of the block
|
||||
sha1_addUncounted(s, 0x80);
|
||||
while (s->bufferOffset != 56) sha1_addUncounted(s, 0x00);
|
||||
|
||||
// Append length in the last 8 bytes
|
||||
sha1_addUncounted(s, 0); // We're only using 32 bit lengths
|
||||
sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths
|
||||
sha1_addUncounted(s, 0); // So zero pad the top bits
|
||||
sha1_addUncounted(s, s->byteCount >> 29); // Shifting to multiply by 8
|
||||
sha1_addUncounted(s, s->byteCount >> 21); // as SHA-1 supports bitstreams as well as
|
||||
sha1_addUncounted(s, s->byteCount >> 13); // byte.
|
||||
sha1_addUncounted(s, s->byteCount >> 5);
|
||||
sha1_addUncounted(s, s->byteCount << 3);
|
||||
}
|
||||
|
||||
uint8_t* sha1_result(sha1nfo *s) {
|
||||
// Pad to complete the last block
|
||||
sha1_pad(s);
|
||||
|
||||
#ifndef SHA_BIG_ENDIAN
|
||||
// Swap byte order back
|
||||
int i;
|
||||
for (i=0; i<5; i++) {
|
||||
s->state[i]=
|
||||
(((s->state[i])<<24)& 0xff000000)
|
||||
| (((s->state[i])<<8) & 0x00ff0000)
|
||||
| (((s->state[i])>>8) & 0x0000ff00)
|
||||
| (((s->state[i])>>24)& 0x000000ff);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Return pointer to hash (20 characters)
|
||||
return (uint8_t*) s->state;
|
||||
}
|
||||
|
||||
#define HMAC_IPAD 0x36
|
||||
#define HMAC_OPAD 0x5c
|
||||
|
||||
void sha1_initHmac(sha1nfo *s, const uint8_t* key, int keyLength) {
|
||||
uint8_t i;
|
||||
memset(s->keyBuffer, 0, BLOCK_LENGTH);
|
||||
if (keyLength > BLOCK_LENGTH) {
|
||||
// Hash long keys
|
||||
sha1_init(s);
|
||||
for (;keyLength--;) sha1_writebyte(s, *key++);
|
||||
memcpy(s->keyBuffer, sha1_result(s), HASH_LENGTH);
|
||||
} else {
|
||||
// Block length keys are used as is
|
||||
memcpy(s->keyBuffer, key, keyLength);
|
||||
}
|
||||
// Start inner hash
|
||||
sha1_init(s);
|
||||
for (i=0; i<BLOCK_LENGTH; i++) {
|
||||
sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_IPAD);
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t* sha1_resultHmac(sha1nfo *s) {
|
||||
uint8_t i;
|
||||
// Complete inner hash
|
||||
memcpy(s->innerHash,sha1_result(s),HASH_LENGTH);
|
||||
// Calculate outer hash
|
||||
sha1_init(s);
|
||||
for (i=0; i<BLOCK_LENGTH; i++) sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_OPAD);
|
||||
for (i=0; i<HASH_LENGTH; i++) sha1_writebyte(s, s->innerHash[i]);
|
||||
return sha1_result(s);
|
||||
}
|
||||
}
|
69
bitlair_doorduino_inner/src/sha1.h
Normal file
69
bitlair_doorduino_inner/src/sha1.h
Normal file
|
@ -0,0 +1,69 @@
|
|||
#ifndef SHA1_H
|
||||
#define SHA1_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
|
||||
#define __LITTLE_ENDIAN__
|
||||
//#define __BIG_ENDIAN__
|
||||
|
||||
namespace sha1
|
||||
{
|
||||
/* This code is public-domain - it is based on libcrypt
|
||||
* placed in the public domain by Wei Dai and other contributors.
|
||||
*/
|
||||
// gcc -Wall -DSHA1TEST -o sha1test sha1.c && ./sha1test
|
||||
|
||||
#ifdef __BIG_ENDIAN__
|
||||
# define SHA_BIG_ENDIAN
|
||||
#elif defined __LITTLE_ENDIAN__
|
||||
/* override */
|
||||
#elif defined __BYTE_ORDER
|
||||
# if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
||||
# define SHA_BIG_ENDIAN
|
||||
# endif
|
||||
#else // ! defined __LITTLE_ENDIAN__
|
||||
# include <machine/endian.h> // machine/endian.h
|
||||
# if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
||||
# define SHA_BIG_ENDIAN
|
||||
# endif
|
||||
#endif
|
||||
|
||||
|
||||
/* header */
|
||||
|
||||
#define HASH_LENGTH 20
|
||||
#define BLOCK_LENGTH 64
|
||||
|
||||
typedef struct sha1nfo {
|
||||
uint32_t buffer[BLOCK_LENGTH/4];
|
||||
uint32_t state[HASH_LENGTH/4];
|
||||
uint32_t byteCount;
|
||||
uint8_t bufferOffset;
|
||||
uint8_t keyBuffer[BLOCK_LENGTH];
|
||||
uint8_t innerHash[HASH_LENGTH];
|
||||
} sha1nfo;
|
||||
|
||||
/* public API - prototypes - TODO: doxygen*/
|
||||
|
||||
/**
|
||||
*/
|
||||
void sha1_init(sha1nfo *s);
|
||||
/**
|
||||
*/
|
||||
void sha1_writebyte(sha1nfo *s, uint8_t data);
|
||||
/**
|
||||
*/
|
||||
void sha1_write(sha1nfo *s, const char *data, size_t len);
|
||||
/**
|
||||
*/
|
||||
uint8_t* sha1_result(sha1nfo *s);
|
||||
/**
|
||||
*/
|
||||
void sha1_initHmac(sha1nfo *s, const uint8_t* key, int keyLength);
|
||||
/**
|
||||
*/
|
||||
uint8_t* sha1_resultHmac(sha1nfo *s);
|
||||
}
|
||||
|
||||
#endif //SHA1_H
|
Loading…
Add table
Add a link
Reference in a new issue